Current File : //lib/modules/6.8.0-60-generic/build/include/linux/usb/gadget.h
// SPDX-License-Identifier: GPL-2.0
/*
 * <linux/usb/gadget.h>
 *
 * We call the USB code inside a Linux-based peripheral device a "gadget"
 * driver, except for the hardware-specific bus glue.  One USB host can
 * talk to many USB gadgets, but the gadgets are only able to communicate
 * to one host.
 *
 *
 * (C) Copyright 2002-2004 by David Brownell
 * All Rights Reserved.
 */

#ifndef __LINUX_USB_GADGET_H
#define __LINUX_USB_GADGET_H

#include <linux/configfs.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/usb/ch9.h>

#define UDC_TRACE_STR_MAX	512

struct usb_ep;

/**
 * struct usb_request - describes one i/o request
 * @buf: Buffer used for data.  Always provide this; some controllers
 *	only use PIO, or don't use DMA for some endpoints.
 * @dma: DMA address corresponding to 'buf'.  If you don't set this
 *	field, and the usb controller needs one, it is responsible
 *	for mapping and unmapping the buffer.
 * @sg: a scatterlist for SG-capable controllers.
 * @num_sgs: number of SG entries
 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
 * @length: Length of that data
 * @stream_id: The stream id, when USB3.0 bulk streams are being used
 * @is_last: Indicates if this is the last request of a stream_id before
 *	switching to a different stream (required for DWC3 controllers).
 * @no_interrupt: If true, hints that no completion irq is needed.
 *	Helpful sometimes with deep request queues that are handled
 *	directly by DMA controllers.
 * @zero: If true, when writing data, makes the last packet be "short"
 *     by adding a zero length packet as needed;
 * @short_not_ok: When reading data, makes short packets be
 *     treated as errors (queue stops advancing till cleanup).
 * @dma_mapped: Indicates if request has been mapped to DMA (internal)
 * @complete: Function called when request completes, so this request and
 *	its buffer may be re-used.  The function will always be called with
 *	interrupts disabled, and it must not sleep.
 *	Reads terminate with a short packet, or when the buffer fills,
 *	whichever comes first.  When writes terminate, some data bytes
 *	will usually still be in flight (often in a hardware fifo).
 *	Errors (for reads or writes) stop the queue from advancing
 *	until the completion function returns, so that any transfers
 *	invalidated by the error may first be dequeued.
 * @context: For use by the completion callback
 * @list: For use by the gadget driver.
 * @frame_number: Reports the interval number in (micro)frame in which the
 *	isochronous transfer was transmitted or received.
 * @status: Reports completion code, zero or a negative errno.
 *	Normally, faults block the transfer queue from advancing until
 *	the completion callback returns.
 *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
 *	or when the driver disabled the endpoint.
 * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
 *	transfers) this may be less than the requested length.  If the
 *	short_not_ok flag is set, short reads are treated as errors
 *	even when status otherwise indicates successful completion.
 *	Note that for writes (IN transfers) some data bytes may still
 *	reside in a device-side FIFO when the request is reported as
 *	complete.
 *
 * These are allocated/freed through the endpoint they're used with.  The
 * hardware's driver can add extra per-request data to the memory it returns,
 * which often avoids separate memory allocations (potential failures),
 * later when the request is queued.
 *
 * Request flags affect request handling, such as whether a zero length
 * packet is written (the "zero" flag), whether a short read should be
 * treated as an error (blocking request queue advance, the "short_not_ok"
 * flag), or hinting that an interrupt is not required (the "no_interrupt"
 * flag, for use with deep request queues).
 *
 * Bulk endpoints can use any size buffers, and can also be used for interrupt
 * transfers. interrupt-only endpoints can be much less functional.
 *
 * NOTE:  this is analogous to 'struct urb' on the host side, except that
 * it's thinner and promotes more pre-allocation.
 */

struct usb_request {
	void			*buf;
	unsigned		length;
	dma_addr_t		dma;

	struct scatterlist	*sg;
	unsigned		num_sgs;
	unsigned		num_mapped_sgs;

	unsigned		stream_id:16;
	unsigned		is_last:1;
	unsigned		no_interrupt:1;
	unsigned		zero:1;
	unsigned		short_not_ok:1;
	unsigned		dma_mapped:1;

	void			(*complete)(struct usb_ep *ep,
					struct usb_request *req);
	void			*context;
	struct list_head	list;

	unsigned		frame_number;		/* ISO ONLY */

	int			status;
	unsigned		actual;
};

/*-------------------------------------------------------------------------*/

/* endpoint-specific parts of the api to the usb controller hardware.
 * unlike the urb model, (de)multiplexing layers are not required.
 * (so this api could slash overhead if used on the host side...)
 *
 * note that device side usb controllers commonly differ in how many
 * endpoints they support, as well as their capabilities.
 */
struct usb_ep_ops {
	int (*enable) (struct usb_ep *ep,
		const struct usb_endpoint_descriptor *desc);
	int (*disable) (struct usb_ep *ep);
	void (*dispose) (struct usb_ep *ep);

	struct usb_request *(*alloc_request) (struct usb_ep *ep,
		gfp_t gfp_flags);
	void (*free_request) (struct usb_ep *ep, struct usb_request *req);

	int (*queue) (struct usb_ep *ep, struct usb_request *req,
		gfp_t gfp_flags);
	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);

	int (*set_halt) (struct usb_ep *ep, int value);
	int (*set_wedge) (struct usb_ep *ep);

	int (*fifo_status) (struct usb_ep *ep);
	void (*fifo_flush) (struct usb_ep *ep);
};

/**
 * struct usb_ep_caps - endpoint capabilities description
 * @type_control:Endpoint supports control type (reserved for ep0).
 * @type_iso:Endpoint supports isochronous transfers.
 * @type_bulk:Endpoint supports bulk transfers.
 * @type_int:Endpoint supports interrupt transfers.
 * @dir_in:Endpoint supports IN direction.
 * @dir_out:Endpoint supports OUT direction.
 */
struct usb_ep_caps {
	unsigned type_control:1;
	unsigned type_iso:1;
	unsigned type_bulk:1;
	unsigned type_int:1;
	unsigned dir_in:1;
	unsigned dir_out:1;
};

#define USB_EP_CAPS_TYPE_CONTROL     0x01
#define USB_EP_CAPS_TYPE_ISO         0x02
#define USB_EP_CAPS_TYPE_BULK        0x04
#define USB_EP_CAPS_TYPE_INT         0x08
#define USB_EP_CAPS_TYPE_ALL \
	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
#define USB_EP_CAPS_DIR_IN           0x01
#define USB_EP_CAPS_DIR_OUT          0x02
#define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)

#define USB_EP_CAPS(_type, _dir) \
	{ \
		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
	}

/**
 * struct usb_ep - device side representation of USB endpoint
 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
 * @ops: Function pointers used to access hardware-specific operations.
 * @ep_list:the gadget's ep_list holds all of its endpoints
 * @caps:The structure describing types and directions supported by endpoint.
 * @enabled: The current endpoint enabled/disabled state.
 * @claimed: True if this endpoint is claimed by a function.
 * @maxpacket:The maximum packet size used on this endpoint.  The initial
 *	value can sometimes be reduced (hardware allowing), according to
 *	the endpoint descriptor used to configure the endpoint.
 * @maxpacket_limit:The maximum packet size value which can be handled by this
 *	endpoint. It's set once by UDC driver when endpoint is initialized, and
 *	should not be changed. Should not be confused with maxpacket.
 * @max_streams: The maximum number of streams supported
 *	by this EP (0 - 16, actual number is 2^n)
 * @mult: multiplier, 'mult' value for SS Isoc EPs
 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
 * @driver_data:for use by the gadget driver.
 * @address: used to identify the endpoint when finding descriptor that
 *	matches connection speed
 * @desc: endpoint descriptor.  This pointer is set before the endpoint is
 *	enabled and remains valid until the endpoint is disabled.
 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
 *	descriptor that is used to configure the endpoint
 *
 * the bus controller driver lists all the general purpose endpoints in
 * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
 * and is accessed only in response to a driver setup() callback.
 */

struct usb_ep {
	void			*driver_data;

	const char		*name;
	const struct usb_ep_ops	*ops;
	struct list_head	ep_list;
	struct usb_ep_caps	caps;
	bool			claimed;
	bool			enabled;
	unsigned		maxpacket:16;
	unsigned		maxpacket_limit:16;
	unsigned		max_streams:16;
	unsigned		mult:2;
	unsigned		maxburst:5;
	u8			address;
	const struct usb_endpoint_descriptor	*desc;
	const struct usb_ss_ep_comp_descriptor	*comp_desc;
};

/*-------------------------------------------------------------------------*/

#if IS_ENABLED(CONFIG_USB_GADGET)
void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
int usb_ep_enable(struct usb_ep *ep);
int usb_ep_disable(struct usb_ep *ep);
struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
int usb_ep_set_halt(struct usb_ep *ep);
int usb_ep_clear_halt(struct usb_ep *ep);
int usb_ep_set_wedge(struct usb_ep *ep);
int usb_ep_fifo_status(struct usb_ep *ep);
void usb_ep_fifo_flush(struct usb_ep *ep);
#else
static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
		unsigned maxpacket_limit)
{ }
static inline int usb_ep_enable(struct usb_ep *ep)
{ return 0; }
static inline int usb_ep_disable(struct usb_ep *ep)
{ return 0; }
static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
		gfp_t gfp_flags)
{ return NULL; }
static inline void usb_ep_free_request(struct usb_ep *ep,
		struct usb_request *req)
{ }
static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
		gfp_t gfp_flags)
{ return 0; }
static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{ return 0; }
static inline int usb_ep_set_halt(struct usb_ep *ep)
{ return 0; }
static inline int usb_ep_clear_halt(struct usb_ep *ep)
{ return 0; }
static inline int usb_ep_set_wedge(struct usb_ep *ep)
{ return 0; }
static inline int usb_ep_fifo_status(struct usb_ep *ep)
{ return 0; }
static inline void usb_ep_fifo_flush(struct usb_ep *ep)
{ }
#endif /* USB_GADGET */

/*-------------------------------------------------------------------------*/

struct usb_dcd_config_params {
	__u8  bU1devExitLat;	/* U1 Device exit Latency */
#define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
#define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
	__u8 besl_baseline;	/* Recommended baseline BESL (0-15) */
	__u8 besl_deep;		/* Recommended deep BESL (0-15) */
#define USB_DEFAULT_BESL_UNSPECIFIED	0xFF	/* No recommended value */
};


struct usb_gadget;
struct usb_gadget_driver;
struct usb_udc;

/* the rest of the api to the controller hardware: device operations,
 * which don't involve endpoints (or i/o).
 */
struct usb_gadget_ops {
	int	(*get_frame)(struct usb_gadget *);
	int	(*wakeup)(struct usb_gadget *);
	int	(*func_wakeup)(struct usb_gadget *gadget, int intf_id);
	int	(*set_remote_wakeup)(struct usb_gadget *, int set);
	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
	int	(*vbus_session) (struct usb_gadget *, int is_active);
	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
	int	(*pullup) (struct usb_gadget *, int is_on);
	int	(*ioctl)(struct usb_gadget *,
				unsigned code, unsigned long param);
	void	(*get_config_params)(struct usb_gadget *,
				     struct usb_dcd_config_params *);
	int	(*udc_start)(struct usb_gadget *,
			struct usb_gadget_driver *);
	int	(*udc_stop)(struct usb_gadget *);
	void	(*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
	void	(*udc_set_ssp_rate)(struct usb_gadget *gadget,
			enum usb_ssp_rate rate);
	void	(*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
	struct usb_ep *(*match_ep)(struct usb_gadget *,
			struct usb_endpoint_descriptor *,
			struct usb_ss_ep_comp_descriptor *);
	int	(*check_config)(struct usb_gadget *gadget);
};

/**
 * struct usb_gadget - represents a usb device
 * @work: (internal use) Workqueue to be used for sysfs_notify()
 * @udc: struct usb_udc pointer for this gadget
 * @ops: Function pointers used to access hardware-specific operations.
 * @ep0: Endpoint zero, used when reading or writing responses to
 *	driver setup() requests
 * @ep_list: List of other endpoints supported by the device.
 * @speed: Speed of current connection to USB host.
 * @max_speed: Maximal speed the UDC can handle.  UDC must support this
 *      and all slower speeds.
 * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
 * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
 *	can handle. The UDC must support this and all slower speeds and lower
 *	number of lanes.
 * @state: the state we are now (attached, suspended, configured, etc)
 * @name: Identifies the controller hardware type.  Used in diagnostics
 *	and sometimes configuration.
 * @dev: Driver model state for this abstract device.
 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
 * @out_epnum: last used out ep number
 * @in_epnum: last used in ep number
 * @mA: last set mA value
 * @otg_caps: OTG capabilities of this gadget.
 * @sg_supported: true if we can handle scatter-gather
 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
 *	gadget driver must provide a USB OTG descriptor.
 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
 *	is in the Mini-AB jack, and HNP has been used to switch roles
 *	so that the "A" device currently acts as A-Peripheral, not A-Host.
 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
 *	supports HNP at this port.
 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
 *	only supports HNP on a different root port.
 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
 *	enabled HNP support.
 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
 *	in peripheral mode can support HNP polling.
 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
 *	or B-Peripheral wants to take host role.
 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
 *	MaxPacketSize.
 * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
 * @quirk_stall_not_supp: UDC controller doesn't support stalling.
 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
 *	u_ether.c to improve performance.
 * @is_selfpowered: if the gadget is self-powered.
 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
 *	be connected.
 * @connected: True if gadget is connected.
 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
 *	indicates that it supports LPM as per the LPM ECN & errata.
 * @wakeup_capable: True if gadget is capable of sending remote wakeup.
 * @wakeup_armed: True if gadget is armed by the host for remote wakeup.
 * @irq: the interrupt number for device controller.
 * @id_number: a unique ID number for ensuring that gadget names are distinct
 *
 * Gadgets have a mostly-portable "gadget driver" implementing device
 * functions, handling all usb configurations and interfaces.  Gadget
 * drivers talk to hardware-specific code indirectly, through ops vectors.
 * That insulates the gadget driver from hardware details, and packages
 * the hardware endpoints through generic i/o queues.  The "usb_gadget"
 * and "usb_ep" interfaces provide that insulation from the hardware.
 *
 * Except for the driver data, all fields in this structure are
 * read-only to the gadget driver.  That driver data is part of the
 * "driver model" infrastructure in 2.6 (and later) kernels, and for
 * earlier systems is grouped in a similar structure that's not known
 * to the rest of the kernel.
 *
 * Values of the three OTG device feature flags are updated before the
 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
 * driver suspend() calls.  They are valid only when is_otg, and when the
 * device is acting as a B-Peripheral (so is_a_peripheral is false).
 */
struct usb_gadget {
	struct work_struct		work;
	struct usb_udc			*udc;
	/* readonly to gadget driver */
	const struct usb_gadget_ops	*ops;
	struct usb_ep			*ep0;
	struct list_head		ep_list;	/* of usb_ep */
	enum usb_device_speed		speed;
	enum usb_device_speed		max_speed;

	/* USB SuperSpeed Plus only */
	enum usb_ssp_rate		ssp_rate;
	enum usb_ssp_rate		max_ssp_rate;

	enum usb_device_state		state;
	const char			*name;
	struct device			dev;
	unsigned			isoch_delay;
	unsigned			out_epnum;
	unsigned			in_epnum;
	unsigned			mA;
	struct usb_otg_caps		*otg_caps;

	unsigned			sg_supported:1;
	unsigned			is_otg:1;
	unsigned			is_a_peripheral:1;
	unsigned			b_hnp_enable:1;
	unsigned			a_hnp_support:1;
	unsigned			a_alt_hnp_support:1;
	unsigned			hnp_polling_support:1;
	unsigned			host_request_flag:1;
	unsigned			quirk_ep_out_aligned_size:1;
	unsigned			quirk_altset_not_supp:1;
	unsigned			quirk_stall_not_supp:1;
	unsigned			quirk_zlp_not_supp:1;
	unsigned			quirk_avoids_skb_reserve:1;
	unsigned			is_selfpowered:1;
	unsigned			deactivated:1;
	unsigned			connected:1;
	unsigned			lpm_capable:1;
	unsigned			wakeup_capable:1;
	unsigned			wakeup_armed:1;
	int				irq;
	int				id_number;
};
#define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))

/* Interface to the device model */
static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
	{ dev_set_drvdata(&gadget->dev, data); }
static inline void *get_gadget_data(struct usb_gadget *gadget)
	{ return dev_get_drvdata(&gadget->dev); }
static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
{
	return container_of(dev, struct usb_gadget, dev);
}
static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
{
	get_device(&gadget->dev);
	return gadget;
}
static inline void usb_put_gadget(struct usb_gadget *gadget)
{
	put_device(&gadget->dev);
}
extern void usb_initialize_gadget(struct device *parent,
		struct usb_gadget *gadget, void (*release)(struct device *dev));
extern int usb_add_gadget(struct usb_gadget *gadget);
extern void usb_del_gadget(struct usb_gadget *gadget);

/* Legacy device-model interface */
extern int usb_add_gadget_udc_release(struct device *parent,
		struct usb_gadget *gadget, void (*release)(struct device *dev));
extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
extern void usb_del_gadget_udc(struct usb_gadget *gadget);
extern char *usb_get_gadget_udc_name(void);

/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
#define gadget_for_each_ep(tmp, gadget) \
	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)

/**
 * usb_ep_align - returns @len aligned to ep's maxpacketsize.
 * @ep: the endpoint whose maxpacketsize is used to align @len
 * @len: buffer size's length to align to @ep's maxpacketsize
 *
 * This helper is used to align buffer's size to an ep's maxpacketsize.
 */
static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
{
	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc);

	return round_up(len, max_packet_size);
}

/**
 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
 *	requires quirk_ep_out_aligned_size, otherwise returns len.
 * @g: controller to check for quirk
 * @ep: the endpoint whose maxpacketsize is used to align @len
 * @len: buffer size's length to align to @ep's maxpacketsize
 *
 * This helper is used in case it's required for any reason to check and maybe
 * align buffer's size to an ep's maxpacketsize.
 */
static inline size_t
usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
{
	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
}

/**
 * gadget_is_altset_supported - return true iff the hardware supports
 *	altsettings
 * @g: controller to check for quirk
 */
static inline int gadget_is_altset_supported(struct usb_gadget *g)
{
	return !g->quirk_altset_not_supp;
}

/**
 * gadget_is_stall_supported - return true iff the hardware supports stalling
 * @g: controller to check for quirk
 */
static inline int gadget_is_stall_supported(struct usb_gadget *g)
{
	return !g->quirk_stall_not_supp;
}

/**
 * gadget_is_zlp_supported - return true iff the hardware supports zlp
 * @g: controller to check for quirk
 */
static inline int gadget_is_zlp_supported(struct usb_gadget *g)
{
	return !g->quirk_zlp_not_supp;
}

/**
 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
 *	skb_reserve to improve performance.
 * @g: controller to check for quirk
 */
static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
{
	return g->quirk_avoids_skb_reserve;
}

/**
 * gadget_is_dualspeed - return true iff the hardware handles high speed
 * @g: controller that might support both high and full speeds
 */
static inline int gadget_is_dualspeed(struct usb_gadget *g)
{
	return g->max_speed >= USB_SPEED_HIGH;
}

/**
 * gadget_is_superspeed() - return true if the hardware handles superspeed
 * @g: controller that might support superspeed
 */
static inline int gadget_is_superspeed(struct usb_gadget *g)
{
	return g->max_speed >= USB_SPEED_SUPER;
}

/**
 * gadget_is_superspeed_plus() - return true if the hardware handles
 *	superspeed plus
 * @g: controller that might support superspeed plus
 */
static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
{
	return g->max_speed >= USB_SPEED_SUPER_PLUS;
}

/**
 * gadget_is_otg - return true iff the hardware is OTG-ready
 * @g: controller that might have a Mini-AB connector
 *
 * This is a runtime test, since kernels with a USB-OTG stack sometimes
 * run on boards which only have a Mini-B (or Mini-A) connector.
 */
static inline int gadget_is_otg(struct usb_gadget *g)
{
#ifdef CONFIG_USB_OTG
	return g->is_otg;
#else
	return 0;
#endif
}

/*-------------------------------------------------------------------------*/

#if IS_ENABLED(CONFIG_USB_GADGET)
int usb_gadget_frame_number(struct usb_gadget *gadget);
int usb_gadget_wakeup(struct usb_gadget *gadget);
int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set);
int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
int usb_gadget_vbus_connect(struct usb_gadget *gadget);
int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
int usb_gadget_connect(struct usb_gadget *gadget);
int usb_gadget_disconnect(struct usb_gadget *gadget);
int usb_gadget_deactivate(struct usb_gadget *gadget);
int usb_gadget_activate(struct usb_gadget *gadget);
int usb_gadget_check_config(struct usb_gadget *gadget);
#else
static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
{ return 0; }
static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{ return 0; }
static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_connect(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_activate(struct usb_gadget *gadget)
{ return 0; }
static inline int usb_gadget_check_config(struct usb_gadget *gadget)
{ return 0; }
#endif /* CONFIG_USB_GADGET */

/*-------------------------------------------------------------------------*/

/**
 * struct usb_gadget_driver - driver for usb gadget devices
 * @function: String describing the gadget's function
 * @max_speed: Highest speed the driver handles.
 * @setup: Invoked for ep0 control requests that aren't handled by
 *	the hardware level driver. Most calls must be handled by
 *	the gadget driver, including descriptor and configuration
 *	management.  The 16 bit members of the setup data are in
 *	USB byte order. Called in_interrupt; this may not sleep.  Driver
 *	queues a response to ep0, or returns negative to stall.
 * @disconnect: Invoked after all transfers have been stopped,
 *	when the host is disconnected.  May be called in_interrupt; this
 *	may not sleep.  Some devices can't detect disconnect, so this might
 *	not be called except as part of controller shutdown.
 * @bind: the driver's bind callback
 * @unbind: Invoked when the driver is unbound from a gadget,
 *	usually from rmmod (after a disconnect is reported).
 *	Called in a context that permits sleeping.
 * @suspend: Invoked on USB suspend.  May be called in_interrupt.
 * @resume: Invoked on USB resume.  May be called in_interrupt.
 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
 *	and should be called in_interrupt.
 * @driver: Driver model state for this driver.
 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
 *	this driver will be bound to any available UDC.
 * @match_existing_only: If udc is not found, return an error and fail
 *	the driver registration
 * @is_bound: Allow a driver to be bound to only one gadget
 *
 * Devices are disabled till a gadget driver successfully bind()s, which
 * means the driver will handle setup() requests needed to enumerate (and
 * meet "chapter 9" requirements) then do some useful work.
 *
 * If gadget->is_otg is true, the gadget driver must provide an OTG
 * descriptor during enumeration, or else fail the bind() call.  In such
 * cases, no USB traffic may flow until both bind() returns without
 * having called usb_gadget_disconnect(), and the USB host stack has
 * initialized.
 *
 * Drivers use hardware-specific knowledge to configure the usb hardware.
 * endpoint addressing is only one of several hardware characteristics that
 * are in descriptors the ep0 implementation returns from setup() calls.
 *
 * Except for ep0 implementation, most driver code shouldn't need change to
 * run on top of different usb controllers.  It'll use endpoints set up by
 * that ep0 implementation.
 *
 * The usb controller driver handles a few standard usb requests.  Those
 * include set_address, and feature flags for devices, interfaces, and
 * endpoints (the get_status, set_feature, and clear_feature requests).
 *
 * Accordingly, the driver's setup() callback must always implement all
 * get_descriptor requests, returning at least a device descriptor and
 * a configuration descriptor.  Drivers must make sure the endpoint
 * descriptors match any hardware constraints. Some hardware also constrains
 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
 *
 * The driver's setup() callback must also implement set_configuration,
 * and should also implement set_interface, get_configuration, and
 * get_interface.  Setting a configuration (or interface) is where
 * endpoints should be activated or (config 0) shut down.
 *
 * The gadget driver's setup() callback does not have to queue a response to
 * ep0 within the setup() call, the driver can do it after setup() returns.
 * The UDC driver must wait until such a response is queued before proceeding
 * with the data/status stages of the control transfer.
 *
 * NOTE: Currently, a number of UDC drivers rely on USB_GADGET_DELAYED_STATUS
 * being returned from the setup() callback, which is a bug. See the comment
 * next to USB_GADGET_DELAYED_STATUS for details.
 *
 * (Note that only the default control endpoint is supported.  Neither
 * hosts nor devices generally support control traffic except to ep0.)
 *
 * Most devices will ignore USB suspend/resume operations, and so will
 * not provide those callbacks.  However, some may need to change modes
 * when the host is not longer directing those activities.  For example,
 * local controls (buttons, dials, etc) may need to be re-enabled since
 * the (remote) host can't do that any longer; or an error state might
 * be cleared, to make the device behave identically whether or not
 * power is maintained.
 */
struct usb_gadget_driver {
	char			*function;
	enum usb_device_speed	max_speed;
	int			(*bind)(struct usb_gadget *gadget,
					struct usb_gadget_driver *driver);
	void			(*unbind)(struct usb_gadget *);
	int			(*setup)(struct usb_gadget *,
					const struct usb_ctrlrequest *);
	void			(*disconnect)(struct usb_gadget *);
	void			(*suspend)(struct usb_gadget *);
	void			(*resume)(struct usb_gadget *);
	void			(*reset)(struct usb_gadget *);

	/* FIXME support safe rmmod */
	struct device_driver	driver;

	char			*udc_name;
	unsigned                match_existing_only:1;
	bool			is_bound:1;
};



/*-------------------------------------------------------------------------*/

/* driver modules register and unregister, as usual.
 * these calls must be made in a context that can sleep.
 *
 * A gadget driver can be bound to only one gadget at a time.
 */

/**
 * usb_gadget_register_driver_owner - register a gadget driver
 * @driver: the driver being registered
 * @owner: the driver module
 * @mod_name: the driver module's build name
 * Context: can sleep
 *
 * Call this in your gadget driver's module initialization function,
 * to tell the underlying UDC controller driver about your driver.
 * The @bind() function will be called to bind it to a gadget before this
 * registration call returns.  It's expected that the @bind() function will
 * be in init sections.
 *
 * Use the macro defined below instead of calling this directly.
 */
int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
		struct module *owner, const char *mod_name);

/* use a define to avoid include chaining to get THIS_MODULE & friends */
#define usb_gadget_register_driver(driver) \
	usb_gadget_register_driver_owner(driver, THIS_MODULE, KBUILD_MODNAME)

/**
 * usb_gadget_unregister_driver - unregister a gadget driver
 * @driver:the driver being unregistered
 * Context: can sleep
 *
 * Call this in your gadget driver's module cleanup function,
 * to tell the underlying usb controller that your driver is
 * going away.  If the controller is connected to a USB host,
 * it will first disconnect().  The driver is also requested
 * to unbind() and clean up any device state, before this procedure
 * finally returns.  It's expected that the unbind() functions
 * will be in exit sections, so may not be linked in some kernels.
 */
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);

/*-------------------------------------------------------------------------*/

/* utility to simplify dealing with string descriptors */

/**
 * struct usb_string - wraps a C string and its USB id
 * @id:the (nonzero) ID for this string
 * @s:the string, in UTF-8 encoding
 *
 * If you're using usb_gadget_get_string(), use this to wrap a string
 * together with its ID.
 */
struct usb_string {
	u8			id;
	const char		*s;
};

/**
 * struct usb_gadget_strings - a set of USB strings in a given language
 * @language:identifies the strings' language (0x0409 for en-us)
 * @strings:array of strings with their ids
 *
 * If you're using usb_gadget_get_string(), use this to wrap all the
 * strings for a given language.
 */
struct usb_gadget_strings {
	u16			language;	/* 0x0409 for en-us */
	struct usb_string	*strings;
};

struct usb_gadget_string_container {
	struct list_head        list;
	u8                      *stash[];
};

/* put descriptor for string with that id into buf (buflen >= 256) */
int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);

/* check if the given language identifier is valid */
bool usb_validate_langid(u16 langid);

struct gadget_string {
	struct config_item item;
	struct list_head list;
	char string[USB_MAX_STRING_LEN];
	struct usb_string usb_string;
};

#define to_gadget_string(str_item)\
container_of(str_item, struct gadget_string, item)

/*-------------------------------------------------------------------------*/

/* utility to simplify managing config descriptors */

/* write vector of descriptors into buffer */
int usb_descriptor_fillbuf(void *, unsigned,
		const struct usb_descriptor_header **);

/* build config descriptor from single descriptor vector */
int usb_gadget_config_buf(const struct usb_config_descriptor *config,
	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);

/* copy a NULL-terminated vector of descriptors */
struct usb_descriptor_header **usb_copy_descriptors(
		struct usb_descriptor_header **);

/**
 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
 * @v: vector of descriptors
 */
static inline void usb_free_descriptors(struct usb_descriptor_header **v)
{
	kfree(v);
}

struct usb_function;
int usb_assign_descriptors(struct usb_function *f,
		struct usb_descriptor_header **fs,
		struct usb_descriptor_header **hs,
		struct usb_descriptor_header **ss,
		struct usb_descriptor_header **ssp);
void usb_free_all_descriptors(struct usb_function *f);

struct usb_descriptor_header *usb_otg_descriptor_alloc(
				struct usb_gadget *gadget);
int usb_otg_descriptor_init(struct usb_gadget *gadget,
		struct usb_descriptor_header *otg_desc);
/*-------------------------------------------------------------------------*/

/* utility to simplify map/unmap of usb_requests to/from DMA */

#ifdef	CONFIG_HAS_DMA
extern int usb_gadget_map_request_by_dev(struct device *dev,
		struct usb_request *req, int is_in);
extern int usb_gadget_map_request(struct usb_gadget *gadget,
		struct usb_request *req, int is_in);

extern void usb_gadget_unmap_request_by_dev(struct device *dev,
		struct usb_request *req, int is_in);
extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
		struct usb_request *req, int is_in);
#else /* !CONFIG_HAS_DMA */
static inline int usb_gadget_map_request_by_dev(struct device *dev,
		struct usb_request *req, int is_in) { return -ENOSYS; }
static inline int usb_gadget_map_request(struct usb_gadget *gadget,
		struct usb_request *req, int is_in) { return -ENOSYS; }

static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
		struct usb_request *req, int is_in) { }
static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
		struct usb_request *req, int is_in) { }
#endif /* !CONFIG_HAS_DMA */

/*-------------------------------------------------------------------------*/

/* utility to set gadget state properly */

extern void usb_gadget_set_state(struct usb_gadget *gadget,
		enum usb_device_state state);

/*-------------------------------------------------------------------------*/

/* utility to tell udc core that the bus reset occurs */
extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
		struct usb_gadget_driver *driver);

/*-------------------------------------------------------------------------*/

/* utility to give requests back to the gadget layer */

extern void usb_gadget_giveback_request(struct usb_ep *ep,
		struct usb_request *req);

/*-------------------------------------------------------------------------*/

/* utility to find endpoint by name */

extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
		const char *name);

/*-------------------------------------------------------------------------*/

/* utility to check if endpoint caps match descriptor needs */

extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
		struct usb_ss_ep_comp_descriptor *ep_comp);

/*-------------------------------------------------------------------------*/

/* utility to update vbus status for udc core, it may be scheduled */
extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);

/*-------------------------------------------------------------------------*/

/* utility wrapping a simple endpoint selection policy */

extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
			struct usb_endpoint_descriptor *);


extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
			struct usb_endpoint_descriptor *,
			struct usb_ss_ep_comp_descriptor *);

extern void usb_ep_autoconfig_release(struct usb_ep *);

extern void usb_ep_autoconfig_reset(struct usb_gadget *);

#endif /* __LINUX_USB_GADGET_H */
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!