Current File : //var/www/prestashop/modules/psxdesign/vendor/jetbrains/phpstorm-stubs/fann/fann.php
<?php

// Start of Fann v.1

/**
 * Class FANNConnection
 */
class FANNConnection
{
    /**
     * @var float
     */
    public $weight;

    /**
     * @var int
     */
    public $to_neuron;

    /**
     * @var int
     */
    public $from_neuron;

    /**
     * The connection constructor
     *
     * @param int $from_neuron
     * @param int $to_neuron
     * @param float $weight
     */
    public function __construct($from_neuron, $to_neuron, $weight) {}

    /**
     * Returns the postions of starting neuron.
     *
     * @return int The postions of starting neuron.
     */
    public function getFromNeuron() {}

    /**
     * Returns the postions of terminating neuron
     *
     * @return int The postions of terminating neuron.
     */
    public function getToNeuron() {}

    /**
     * Returns the connection weight
     *
     * @return void The connection weight.
     */
    public function getWeight() {}

    /**
     * Sets the connections weight
     *
     * @param float $weight
     *
     * @return bool
     */
    public function setWeight($weight) {}
}

/**
 * Trains on an entire dataset, for a period of time using the Cascade2 training algorithm
 *
 *
 * @param resource $ann
 * @param resource $data
 * @param int $max_neurons
 * @param int $neurons_between_reports
 * @param float $desired_error
 *
 * @return bool
 */
function fann_cascadetrain_on_data($ann, $data, $max_neurons, $neurons_between_reports, $desired_error) {}

/**
 * Trains on an entire dataset read from file, for a period of time using the Cascade2 training algorithm.
 *
 *
 * @param resource $ann
 * @param string $filename
 * @param int $max_neurons
 * @param int $neurons_between_reports
 * @param float $desired_error
 *
 * @return bool
 */
function fann_cascadetrain_on_file($ann, $filename, $max_neurons, $neurons_between_reports, $desired_error) {}

/**
 * Clears scaling parameters
 *
 *
 * @param resource $ann
 *
 * @return bool
 */
function fann_clear_scaling_params($ann) {}

/**
 * Creates a copy of a fann structure
 *
 *
 * @param resource $ann
 *
 * @return resource|false Returns a copy of neural network resource on success, or false on error
 */
function fann_copy($ann) {}

/**
 * Constructs a backpropagation neural network from a configuration file
 *
 *
 * @param string $configuration_file
 *
 * @return resource|false
 */
function fann_create_from_file($configuration_file) {}

/**
 * Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
 *
 *
 * @param int $num_layers
 * @param array $layers
 *
 * @return resource|false Returns a neural network resource on success, or false on error.
 */
function fann_create_shortcut_array($num_layers, $layers) {}

/**
 * Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
 *
 * @param int $num_layers
 * @param int $num_neurons1
 * @param int $num_neurons2
 * @param int ...$_
 *
 * @return resource|false Returns a neural network resource on success, or false on error.
 */
function fann_create_shortcut($num_layers, $num_neurons1, $num_neurons2, ...$_) {}

/**
 * Creates a standard backpropagation neural network, which is not fully connected using an array of layer sizes
 *
 *
 * @param float $connection_rate
 * @param int $num_layers
 * @param array $layers
 *
 * @return resource|false Returns a neural network resource on success, or false on error.
 */
function fann_create_sparse_array($connection_rate, $num_layers, $layers) {}

/**
 * Creates a standard backpropagation neural network, which is not fully connected
 *
 *
 * @param float $connection_rate
 * @param int $num_layers
 * @param int $num_neurons1
 * @param int $num_neurons2
 * @param int ...$_
 *
 * @return resource|false Returns a neural network resource on success, or false on error.
 */
function fann_create_sparse($connection_rate, $num_layers, $num_neurons1, $num_neurons2, ...$_) {}

/**
 * Creates a standard fully connected backpropagation neural network using an array of layer sizes
 *
 *
 * @param int $num_layers
 * @param array $layers
 *
 * @return resource|false Returns a neural network resource on success, or false on error.
 */
function fann_create_standard_array($num_layers, $layers) {}

/**
 * Creates a standard fully connected backpropagation neural network
 *
 *
 * @param int $num_layers
 * @param int $num_neurons1
 * @param int $num_neurons2
 * @param int ...$_
 *
 * @return resource|false Returns a neural network resource on success, or false on error.
 */
function fann_create_standard($num_layers, $num_neurons1, $num_neurons2, ...$_) {}

/**
 * Creates the training data struct from a user supplied function
 *
 *
 * @param int $num_data
 * @param int $num_input
 * @param int $num_output
 * @param callable $user_function
 *
 * @return resource|false
 */
function fann_create_train_from_callback($num_data, $num_input, $num_output, $user_function) {}

/**
 * Creates an empty training data struct
 *
 *
 * @param int $num_data
 * @param int $num_input
 * @param int $num_output
 *
 * @return resource|false
 */
function fann_create_train($num_data, $num_input, $num_output) {}

/**
 * Scale data in input vector after get it from ann based on previously calculated parameters
 *
 *
 * @param resource $ann
 * @param array $input_vector
 *
 * @return bool
 */
function fann_descale_input($ann, $input_vector) {}

/**
 * Scale data in output vector after get it from ann based on previously calculated parameters
 *
 *
 * @param resource $ann
 * @param array $output_vector
 *
 * @return bool
 */
function fann_descale_output($ann, $output_vector) {}

/**
 * Descale input and output data based on previously calculated parameters
 *
 *
 * @param resource $ann
 * @param resource $train_data
 *
 * @return bool
 */
function fann_descale_train($ann, $train_data) {}

/**
 * Destroys the entire network and properly freeing all the associated memory
 *
 *
 * @param resource $ann
 *
 * @return bool
 */
function fann_destroy($ann) {}

/**
 * Destructs the training data
 *
 *
 * @param resource $train_data
 *
 * @return bool
 */
function fann_destroy_train($train_data) {}

/**
 * Returns an exact copy of a fann train data
 *
 *
 * @param resource $data
 *
 * @return resource|false
 */
function fann_duplicate_train_data($data) {}

/**
 * Returns the activation function
 *
 *
 * @param resource $ann
 * @param int $layer
 * @param int $neuron
 *
 * @return int|false constant or -1 if the neuron is not defined in the neural network, or false on error.
 */
function fann_get_activation_function($ann, $layer, $neuron) {}

/**
 * Returns the activation steepness for supplied neuron and layer number
 *
 *
 * @param resource $ann
 * @param int $layer
 * @param int $neuron
 *
 * @return float|false The activation steepness for the neuron or -1 if the neuron is not defined in the neural network, or false on error.
 */
function fann_get_activation_steepness($ann, $layer, $neuron) {}

/**
 * Get the number of bias in each layer in the network
 *
 *
 * @param resource $ann
 *
 * @return array An array of numbers of bias in each layer
 */
function fann_get_bias_array($ann) {}

/**
 * Returns the bit fail limit used during training
 *
 *
 * @param resource $ann
 *
 * @return float|false The bit fail limit, or false on error.
 */
function fann_get_bit_fail_limit($ann) {}

/**
 * The number of fail bits
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of bits fail, or false on error.
 */
function fann_get_bit_fail($ann) {}

/**
 * Returns the number of cascade activation functions
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of cascade activation functions, or false on error.
 */
function fann_get_cascade_activation_functions_count($ann) {}

/**
 * Returns the cascade activation functions
 *
 *
 * @param resource $ann
 *
 * @return array|false The cascade activation functions, or false on error.
 */
function fann_get_cascade_activation_functions($ann) {}

/**
 * The number of activation steepnesses
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of activation steepnesses, or false on error.
 */
function fann_get_cascade_activation_steepnesses_count($ann) {}

/**
 * Returns the cascade activation steepnesses
 *
 *
 * @param resource $ann
 *
 * @return array|false The cascade activation steepnesses, or false on error.
 */
function fann_get_cascade_activation_steepnesses($ann) {}

/**
 * Returns the cascade candidate change fraction
 *
 *
 * @param resource $ann
 *
 * @return float|false The cascade candidate change fraction, or false on error.
 */
function fann_get_cascade_candidate_change_fraction($ann) {}

/**
 * Return the candidate limit
 *
 *
 * @param resource $ann
 *
 * @return float|false The candidate limit, or false on error.
 */
function fann_get_cascade_candidate_limit($ann) {}

/**
 * Returns the number of cascade candidate stagnation epochs
 *
 *
 * @param resource $ann
 *
 * @return float|false The number of cascade candidate stagnation epochs, or false on error.
 */
function fann_get_cascade_candidate_stagnation_epochs($ann) {}

/**
 * Returns the maximum candidate epochs
 *
 *
 * @param resource $ann
 *
 * @return int|false The maximum candidate epochs, or false on error.
 */
function fann_get_cascade_max_cand_epochs($ann) {}

/**
 * Returns the maximum out epochs
 *
 *
 * @param resource $ann
 *
 * @return int|false The maximum out epochs, or false on error.
 */
function fann_get_cascade_max_out_epochs($ann) {}

/**
 * Returns the minimum candidate epochs
 *
 *
 * @param resource $ann
 *
 * @return int|false The minimum candidate epochs, or false on error.
 */
function fann_get_cascade_min_cand_epochs($ann) {}

/**
 * Returns the minimum out epochs
 *
 *
 * @param resource $ann
 *
 * @return int|false The minimum out epochs, or false on error.
 */
function fann_get_cascade_min_out_epochs($ann) {}

/**
 * Returns the number of candidate groups
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of candidate groups, or false on error.
 */
function fann_get_cascade_num_candidate_groups($ann) {}

/**
 * Returns the number of candidates used during training
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of candidates used during training, or false on error.
 */
function fann_get_cascade_num_candidates($ann) {}

/**
 * Returns the cascade output change fraction
 *
 *
 * @param resource $ann
 *
 * @return float|false The cascade output change fraction, or false on error.
 */
function fann_get_cascade_output_change_fraction($ann) {}

/**
 * Returns the number of cascade output stagnation epochs
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of cascade output stagnation epochs, or false on error.
 */
function fann_get_cascade_output_stagnation_epochs($ann) {}

/**
 * Returns the weight multiplier
 *
 *
 * @param resource $ann
 *
 * @return float|false The weight multiplier, or false on error.
 */
function fann_get_cascade_weight_multiplier($ann) {}

/**
 * Get connections in the network
 *
 *
 * @param resource $ann
 *
 * @return array An array of connections in the network
 */
function fann_get_connection_array($ann) {}

/**
 * Get the connection rate used when the network was created
 *
 *
 * @param resource $ann
 *
 * @return float|false The connection rate used when the network was created, or false on error.
 */
function fann_get_connection_rate($ann) {}

/**
 * Returns the last error number
 *
 *
 * @param resource $errdat
 *
 * @return int|false The error number, or false on error.
 */
function fann_get_errno($errdat) {}

/**
 * Returns the last errstr
 *
 *
 * @param resource $errdat
 *
 * @return string|false The last error string, or false on error.
 */
function fann_get_errstr($errdat) {}

/**
 * Get the number of neurons in each layer in the network
 *
 *
 * @param resource $ann
 *
 * @return array An array of numbers of neurons in each leayer
 */
function fann_get_layer_array($ann) {}

/**
 * Returns the learning momentum
 *
 *
 * @param resource $ann
 *
 * @return float|false The learning momentum, or false on error.
 */
function fann_get_learning_momentum($ann) {}

/**
 * Returns the learning rate
 *
 *
 * @param resource $ann
 *
 * @return float|false The learning rate, or false on error.
 */
function fann_get_learning_rate($ann) {}

/**
 * Reads the mean square error from the network
 *
 *
 * @param resource $ann
 *
 * @return float|false The mean square error, or false on error.
 */
function fann_get_MSE($ann) {}

/**
 * Get the type of neural network it was created as
 *
 *
 * @param resource $ann
 *
 * @return int|false constant, or false on error.
 */
function fann_get_network_type($ann) {}

/**
 * Get the number of input neurons
 *
 *
 * @param resource $ann
 *
 * @return int|false Number of input neurons, or false on error
 */
function fann_get_num_input($ann) {}

/**
 * Get the number of layers in the neural network
 *
 *
 * @param resource $ann
 *
 * @return int|false The number of leayers in the neural network, or false on error.
 */
function fann_get_num_layers($ann) {}

/**
 * Get the number of output neurons
 *
 *
 * @param resource $ann
 *
 * @return int|false Number of output neurons, or false on error
 */
function fann_get_num_output($ann) {}

/**
 * Returns the decay which is a factor that weights should decrease in each iteration during quickprop training
 *
 *
 * @param resource $ann
 *
 * @return float|false The decay, or false on error.
 */
function fann_get_quickprop_decay($ann) {}

/**
 * Returns the mu factor
 *
 *
 * @param resource $ann
 *
 * @return float|false The mu factor, or false on error.
 */
function fann_get_quickprop_mu($ann) {}

/**
 * Returns the increase factor used during RPROP training
 *
 *
 * @param resource $ann
 *
 * @return float|false The decrease factor, or false on error.
 */
function fann_get_rprop_decrease_factor($ann) {}

/**
 * Returns the maximum step-size
 *
 *
 * @param resource $ann
 *
 * @return float|false The maximum step-size, or false on error.
 */
function fann_get_rprop_delta_max($ann) {}

/**
 * Returns the minimum step-size
 *
 *
 * @param resource $ann
 *
 * @return float|false The minimum step-size, or false on error.
 */
function fann_get_rprop_delta_min($ann) {}

/**
 * Returns the initial step-size
 *
 *
 * @param resource $ann
 *
 * @return int|false The initial step-size, or false on error.
 */
function fann_get_rprop_delta_zero($ann) {}

/**
 * Returns the increase factor used during RPROP training
 *
 *
 * @param resource $ann
 *
 * @return float|false The increase factor, or false on error.
 */
function fann_get_rprop_increase_factor($ann) {}

/**
 * Returns the sarprop step error shift
 *
 *
 * @param resource $ann
 *
 * @return float|false The sarprop step error shift , or false on error.
 */
function fann_get_sarprop_step_error_shift($ann) {}

/**
 * Returns the sarprop step error threshold factor
 *
 *
 * @param resource $ann
 *
 * @return float|false The sarprop step error threshold factor, or false on error.
 */
function fann_get_sarprop_step_error_threshold_factor($ann) {}

/**
 * Returns the sarprop temperature
 *
 *
 * @param resource $ann
 *
 * @return float|false The sarprop temperature, or false on error.
 */
function fann_get_sarprop_temperature($ann) {}

/**
 * Returns the sarprop weight decay shift
 *
 *
 * @param resource $ann
 *
 * @return float|false The sarprop weight decay shift, or false on error.
 */
function fann_get_sarprop_weight_decay_shift($ann) {}

/**
 * Get the total number of connections in the entire network
 *
 *
 * @param resource $ann
 *
 * @return int|false Total number of connections in the entire network, or false on error
 */
function fann_get_total_connections($ann) {}

/**
 * Get the total number of neurons in the entire network
 *
 *
 * @param resource $ann
 *
 * @return int|false Total number of neurons in the entire network, or false on error.
 */
function fann_get_total_neurons($ann) {}

/**
 * Returns the error function used during training
 *
 *
 * @param resource $ann
 *
 * @return int|false The constant, or false on error.
 */
function fann_get_train_error_function($ann) {}

/**
 * Returns the training algorithm
 *
 *
 * @param resource $ann
 *
 * @return int|false constant, or false on error.
 */
function fann_get_training_algorithm($ann) {}

/**
 * Returns the stop function used during training
 *
 *
 * @param resource $ann
 *
 * @return int|false The constant, or false on error.
 */
function fann_get_train_stop_function($ann) {}

/**
 * Initialize the weights using Widrow + Nguyen’s algorithm
 *
 *
 * @param resource $ann
 * @param resource $train_data
 *
 * @return bool
 */
function fann_init_weights($ann, $train_data) {}

/**
 * Returns the number of training patterns in the train data
 *
 *
 * @param resource $data
 *
 * @return int|false Number of elements in the train data ``resource``, or false on error.
 */
function fann_length_train_data($data) {}

/**
 * Merges the train data
 *
 *
 * @param resource $data1
 * @param resource $data2
 *
 * @return resource|false New merged train data ``resource``, or false on error.
 */
function fann_merge_train_data($data1, $data2) {}

/**
 * Returns the number of inputs in each of the training patterns in the train data
 *
 *
 * @param resource $data
 *
 * @return int|false The number of inputs, or false on error.
 */
function fann_num_input_train_data($data) {}

/**
 * Returns the number of outputs in each of the training patterns in the train data
 *
 *
 * @param resource $data
 *
 * @return int|false The number of outputs, or false on error.
 */
function fann_num_output_train_data($data) {}

/**
 * Prints the error string
 * @link https://www.php.net/manual/en/function.fann-print-error.php
 *
 * @param resource $errdat
 *
 * @return void
 */
function fann_print_error($errdat) {}

/**
 * Give each connection a random weight between min_weight and max_weight
 *
 *
 * @param resource $ann
 * @param float $min_weight
 * @param float $max_weight
 *
 * @return bool
 */
function fann_randomize_weights($ann, $min_weight, $max_weight) {}

/**
 * Reads a file that stores training data
 *
 *
 * @param string $filename
 *
 * @return resource|false
 */
function fann_read_train_from_file($filename) {}

/**
 * Resets the last error number
 *
 *
 * @param resource $errdat
 *
 * @return void
 */
function fann_reset_errno($errdat) {}

/**
 * Resets the last error string
 *
 *
 * @param resource $errdat
 *
 * @return void
 */
function fann_reset_errstr($errdat) {}

/**
 * Resets the mean square error from the network
 *
 *
 * @param string $ann
 *
 * @return bool
 */
function fann_reset_MSE($ann) {}

/**
 * Will run input through the neural network
 *
 *
 * @param resource $ann
 * @param array $input
 *
 * @return array|false Array of output values, or false on error
 */
function fann_run($ann, $input) {}

/**
 * Saves the entire network to a configuration file
 *
 *
 * @param resource $ann
 * @param string $configuration_file
 *
 * @return bool
 */
function fann_save($ann, $configuration_file) {}

/**
 * Save the training structure to a file
 *
 *
 * @param resource $data
 * @param string $file_name
 *
 * @return bool
 */
function fann_save_train($data, $file_name) {}

/**
 * Scale data in input vector before feed it to ann based on previously calculated parameters
 *
 *
 * @param resource $ann
 * @param array $input_vector
 *
 * @return bool
 */
function fann_scale_input($ann, $input_vector) {}

/**
 * Scales the inputs in the training data to the specified range
 *
 *
 * @param resource $train_data
 * @param float $new_min
 * @param float $new_max
 *
 * @return bool
 */
function fann_scale_input_train_data($train_data, $new_min, $new_max) {}

/**
 * Scale data in output vector before feed it to ann based on previously calculated parameters
 *
 *
 * @param resource $ann
 * @param array $output_vector
 *
 * @return bool
 */
function fann_scale_output($ann, $output_vector) {}

/**
 * Scales the outputs in the training data to the specified range
 *
 *
 * @param resource $train_data
 * @param float $new_min
 * @param float $new_max
 *
 * @return bool
 */
function fann_scale_output_train_data($train_data, $new_min, $new_max) {}

/**
 * Scales the inputs and outputs in the training data to the specified range
 *
 *
 * @param resource $train_data
 * @param float $new_min
 * @param float $new_max
 *
 * @return bool
 */
function fann_scale_train_data($train_data, $new_min, $new_max) {}

/**
 * Scale input and output data based on previously calculated parameters
 *
 *
 * @param resource $ann
 * @param resource $train_data
 *
 * @return bool
 */
function fann_scale_train($ann, $train_data) {}

/**
 * Sets the activation function for all of the hidden layers
 *
 *
 * @param resource $ann
 * @param int $activation_function
 *
 * @return bool
 */
function fann_set_activation_function_hidden($ann, $activation_function) {}

/**
 * Sets the activation function for all the neurons in the supplied layer.
 *
 *
 * @param resource $ann
 * @param int $activation_function
 * @param int $layer
 *
 * @return bool
 */
function fann_set_activation_function_layer($ann, $activation_function, $layer) {}

/**
 * Sets the activation function for the output layer
 *
 *
 * @param resource $ann
 * @param int $activation_function
 *
 * @return bool
 */
function fann_set_activation_function_output($ann, $activation_function) {}

/**
 * Sets the activation function for supplied neuron and layer
 *
 *
 * @param resource $ann
 * @param int $activation_function
 * @param int $layer
 * @param int $neuron
 *
 * @return bool
 */
function fann_set_activation_function($ann, $activation_function, $layer, $neuron) {}

/**
 * Sets the steepness of the activation steepness for all neurons in the all hidden layers
 *
 *
 * @param resource $ann
 * @param float $activation_steepness
 *
 * @return bool
 */
function fann_set_activation_steepness_hidden($ann, $activation_steepness) {}

/**
 * Sets the activation steepness for all of the neurons in the supplied layer number
 *
 *
 * @param resource $ann
 * @param float $activation_steepness
 * @param int $layer
 *
 * @return bool
 */
function fann_set_activation_steepness_layer($ann, $activation_steepness, $layer) {}

/**
 * Sets the steepness of the activation steepness in the output layer
 *
 *
 * @param resource $ann
 * @param float $activation_steepness
 *
 * @return bool
 */
function fann_set_activation_steepness_output($ann, $activation_steepness) {}

/**
 * Sets the activation steepness for supplied neuron and layer number
 *
 *
 * @param resource $ann
 * @param float $activation_steepness
 * @param int $layer
 * @param int $neuron
 *
 * @return bool
 */
function fann_set_activation_steepness($ann, $activation_steepness, $layer, $neuron) {}

/**
 * Set the bit fail limit used during training
 *
 *
 * @param resource $ann
 * @param float $bit_fail_limit
 *
 * @return bool
 */
function fann_set_bit_fail_limit($ann, $bit_fail_limit) {}

/**
 * Sets the callback function for use during training
 *
 *
 * @param resource $ann
 * @param callable $callback
 *
 * @return bool
 */
function fann_set_callback($ann, $callback) {}

/**
 * Sets the array of cascade candidate activation functions
 *
 *
 * @param resource $ann
 * @param array $cascade_activation_functions
 *
 * @return bool
 */
function fann_set_cascade_activation_functions($ann, $cascade_activation_functions) {}

/**
 * Sets the array of cascade candidate activation steepnesses
 *
 *
 * @param resource $ann
 * @param array $cascade_activation_steepnesses_count
 *
 * @return bool
 */
function fann_set_cascade_activation_steepnesses($ann, $cascade_activation_steepnesses_count) {}

/**
 * Sets the cascade candidate change fraction
 *
 *
 * @param resource $ann
 * @param float $cascade_candidate_change_fraction
 *
 * @return bool
 */
function fann_set_cascade_candidate_change_fraction($ann, $cascade_candidate_change_fraction) {}

/**
 * Sets the candidate limit
 *
 *
 * @param resource $ann
 * @param float $cascade_candidate_limit
 *
 * @return bool
 */
function fann_set_cascade_candidate_limit($ann, $cascade_candidate_limit) {}

/**
 * Sets the number of cascade candidate stagnation epochs
 *
 *
 * @param resource $ann
 * @param int $cascade_candidate_stagnation_epochs
 *
 * @return bool
 */
function fann_set_cascade_candidate_stagnation_epochs($ann, $cascade_candidate_stagnation_epochs) {}

/**
 * Sets the max candidate epochs
 *
 *
 * @param resource $ann
 * @param int $cascade_max_cand_epochs
 *
 * @return bool
 */
function fann_set_cascade_max_cand_epochs($ann, $cascade_max_cand_epochs) {}

/**
 * Sets the maximum out epochs
 *
 *
 * @param resource $ann
 * @param int $cascade_max_out_epochs
 *
 * @return bool
 */
function fann_set_cascade_max_out_epochs($ann, $cascade_max_out_epochs) {}

/**
 * Sets the min candidate epochs
 *
 *
 * @param resource $ann
 * @param int $cascade_min_cand_epochs
 *
 * @return bool
 */
function fann_set_cascade_min_cand_epochs($ann, $cascade_min_cand_epochs) {}

/**
 * Sets the minimum out epochs
 *
 *
 * @param resource $ann
 * @param int $cascade_min_out_epochs
 *
 * @return bool
 */
function fann_set_cascade_min_out_epochs($ann, $cascade_min_out_epochs) {}

/**
 * Sets the number of candidate groups
 *
 *
 * @param resource $ann
 * @param int $cascade_num_candidate_groups
 *
 * @return bool
 */
function fann_set_cascade_num_candidate_groups($ann, $cascade_num_candidate_groups) {}

/**
 * Sets the cascade output change fraction
 *
 *
 * @param resource $ann
 * @param float $cascade_output_change_fraction
 *
 * @return bool
 */
function fann_set_cascade_output_change_fraction($ann, $cascade_output_change_fraction) {}

/**
 * Sets the number of cascade output stagnation epochs
 *
 *
 * @param resource $ann
 * @param int $cascade_output_stagnation_epochs
 *
 * @return bool
 */
function fann_set_cascade_output_stagnation_epochs($ann, $cascade_output_stagnation_epochs) {}

/**
 * Sets the weight multiplier
 *
 *
 * @param resource $ann
 * @param float $cascade_weight_multiplier
 *
 * @return bool
 */
function fann_set_cascade_weight_multiplier($ann, $cascade_weight_multiplier) {}

/**
 * Sets where the errors are logged to
 *
 *
 * @param resource $errdat
 * @param string $log_file
 *
 * @return void
 */
function fann_set_error_log($errdat, $log_file) {}

/**
 * Calculate input scaling parameters for future use based on training data
 *
 *
 * @param resource $ann
 * @param resource $train_data
 * @param float $new_input_min
 * @param float $new_input_max
 *
 * @return bool
 */
function fann_set_input_scaling_params($ann, $train_data, $new_input_min, $new_input_max) {}

/**
 * Sets the learning momentum
 *
 *
 * @param resource $ann
 * @param float $learning_momentum
 *
 * @return bool
 */
function fann_set_learning_momentum($ann, $learning_momentum) {}

/**
 * Sets the learning rate
 *
 *
 * @param resource $ann
 * @param float $learning_rate
 *
 * @return bool
 */
function fann_set_learning_rate($ann, $learning_rate) {}

/**
 * Calculate output scaling parameters for future use based on training data
 *
 *
 * @param resource $ann
 * @param resource $train_data
 * @param float $new_output_min
 * @param float $new_output_max
 *
 * @return bool
 */
function fann_set_output_scaling_params($ann, $train_data, $new_output_min, $new_output_max) {}

/**
 * Sets the quickprop decay factor
 *
 *
 * @param resource $ann
 * @param float $quickprop_decay
 *
 * @return bool
 */
function fann_set_quickprop_decay($ann, $quickprop_decay) {}

/**
 * Sets the quickprop mu factor
 *
 *
 * @param resource $ann
 * @param float $quickprop_mu
 *
 * @return bool
 */
function fann_set_quickprop_mu($ann, $quickprop_mu) {}

/**
 * Sets the decrease factor used during RPROP training
 *
 *
 * @param resource $ann
 * @param float $rprop_decrease_factor
 *
 * @return bool
 */
function fann_set_rprop_decrease_factor($ann, $rprop_decrease_factor) {}

/**
 * Sets the maximum step-size
 *
 *
 * @param resource $ann
 * @param float $rprop_delta_max
 *
 * @return bool
 */
function fann_set_rprop_delta_max($ann, $rprop_delta_max) {}

/**
 * Sets the minimum step-size
 *
 *
 * @param resource $ann
 * @param float $rprop_delta_min
 *
 * @return bool
 */
function fann_set_rprop_delta_min($ann, $rprop_delta_min) {}

/**
 * Sets the initial step-size
 *
 *
 * @param resource $ann
 * @param float $rprop_delta_zero
 *
 * @return bool
 */
function fann_set_rprop_delta_zero($ann, $rprop_delta_zero) {}

/**
 * Sets the increase factor used during RPROP training
 *
 *
 * @param resource $ann
 * @param float $rprop_increase_factor
 *
 * @return bool
 */
function fann_set_rprop_increase_factor($ann, $rprop_increase_factor) {}

/**
 * Sets the sarprop step error shift
 *
 *
 * @param resource $ann
 * @param float $sarprop_step_error_shift
 *
 * @return bool
 */
function fann_set_sarprop_step_error_shift($ann, $sarprop_step_error_shift) {}

/**
 * Sets the sarprop step error threshold factor
 *
 *
 * @param resource $ann
 * @param float $sarprop_step_error_threshold_factor
 *
 * @return bool
 */
function fann_set_sarprop_step_error_threshold_factor($ann, $sarprop_step_error_threshold_factor) {}

/**
 * Sets the sarprop temperature
 *
 *
 * @param resource $ann
 * @param float $sarprop_temperature
 *
 * @return bool
 */
function fann_set_sarprop_temperature($ann, $sarprop_temperature) {}

/**
 * Sets the sarprop weight decay shift
 *
 *
 * @param resource $ann
 * @param float $sarprop_weight_decay_shift
 *
 * @return bool
 */
function fann_set_sarprop_weight_decay_shift($ann, $sarprop_weight_decay_shift) {}

/**
 * Calculate input and output scaling parameters for future use based on training data
 *
 *
 * @param resource $ann
 * @param resource $train_data
 * @param float $new_input_min
 * @param float $new_input_max
 * @param float $new_output_min
 * @param float $new_output_max
 *
 * @return bool
 */
function fann_set_scaling_params($ann, $train_data, $new_input_min, $new_input_max, $new_output_min, $new_output_max) {}

/**
 * Sets the error function used during training
 *
 *
 * @param resource $ann
 * @param int $error_function
 *
 * @return bool
 */
function fann_set_train_error_function($ann, $error_function) {}

/**
 * Sets the training algorithm
 *
 *
 * @param resource $ann
 * @param int $training_algorithm
 *
 * @return bool
 */
function fann_set_training_algorithm($ann, $training_algorithm) {}

/**
 * Sets the stop function used during training
 *
 *
 * @param resource $ann
 * @param int $stop_function
 *
 * @return bool
 */
function fann_set_train_stop_function($ann, $stop_function) {}

/**
 * Set connections in the network
 *
 *
 * @param resource $ann
 * @param array $connections
 *
 * @return bool
 */
function fann_set_weight_array($ann, $connections) {}

/**
 * Set a connection in the network
 *
 *
 * @param resource $ann
 * @param int $from_neuron
 * @param int $to_neuron
 * @param float $weight
 *
 * @return bool
 */
function fann_set_weight($ann, $from_neuron, $to_neuron, $weight) {}

/**
 * Shuffles training data, randomizing the order
 *
 *
 * @param resource $train_data
 *
 * @return bool
 */
function fann_shuffle_train_data($train_data) {}

/**
 * Returns an copy of a subset of the train data
 *
 *
 * @param resource $data
 * @param int $pos
 * @param int $length
 *
 * @return resource|false
 */
function fann_subset_train_data($data, $pos, $length) {}

/**
 * Test a set of training data and calculates the MSE for the training data
 *
 *
 * @param resource $ann
 * @param resource $data
 *
 * @return float|false The updated MSE, or false on error.
 */
function fann_test_data($ann, $data) {}

/**
 * Test with a set of inputs, and a set of desired outputs
 *
 *
 * @param resource $ann
 * @param array $input
 * @param array $desired_output
 *
 * @return bool
 */
function fann_test($ann, $input, $desired_output) {}

/**
 * Train one epoch with a set of training data
 *
 *
 * @param resource $ann
 * @param resource $data
 *
 * @return float|false The MSE, or false on error.
 */
function fann_train_epoch($ann, $data) {}

/**
 * Trains on an entire dataset for a period of time
 *
 *
 * @param resource $ann
 * @param resource $data
 * @param int $max_epochs
 * @param int $epochs_between_reports
 * @param float $desired_error
 *
 * @return bool
 */
function fann_train_on_data($ann, $data, $max_epochs, $epochs_between_reports, $desired_error) {}

/**
 * Trains on an entire dataset, which is read from file, for a period of time
 *
 *
 * @param resource $ann
 * @param string $filename
 * @param int $max_epochs
 * @param int $epochs_between_reports
 * @param float $desired_error
 *
 * @return bool
 */
function fann_train_on_file($ann, $filename, $max_epochs, $epochs_between_reports, $desired_error) {}

/**
 * Train one iteration with a set of inputs, and a set of desired outputs
 *
 *
 * @param resource $ann
 * @param array $input
 * @param array $desired_output
 *
 * @return bool
 */
function fann_train($ann, $input, $desired_output) {}

define('FANN_TRAIN_INCREMENTAL', 0);
define('FANN_TRAIN_BATCH', 1);
define('FANN_TRAIN_RPROP', 2);
define('FANN_TRAIN_QUICKPROP', 3);
define('FANN_TRAIN_SARPROP', 4);
define('FANN_LINEAR', 0);
define('FANN_THRESHOLD', 1);
define('FANN_THRESHOLD_SYMMETRIC', 2);
define('FANN_SIGMOID', 3);
define('FANN_SIGMOID_STEPWISE', 4);
define('FANN_SIGMOID_SYMMETRIC', 5);
define('FANN_SIGMOID_SYMMETRIC_STEPWISE', 6);
define('FANN_GAUSSIAN', 7);
define('FANN_GAUSSIAN_SYMMETRIC', 8);
define('FANN_GAUSSIAN_STEPWISE', 9);
define('FANN_ELLIOT', 10);
define('FANN_ELLIOT_SYMMETRIC', 11);
define('FANN_LINEAR_PIECE', 12);
define('FANN_LINEAR_PIECE_SYMMETRIC', 13);
define('FANN_SIN_SYMMETRIC', 14);
define('FANN_COS_SYMMETRIC', 15);
define('FANN_SIN', 16);
define('FANN_COS', 17);
define('FANN_ERRORFUNC_LINEAR', 0);
define('FANN_ERRORFUNC_TANH', 1);
define('FANN_STOPFUNC_MSE', 0);
define('FANN_STOPFUNC_BIT', 1);
define('FANN_NETTYPE_LAYER', 0);
define('FANN_NETTYPE_SHORTCUT', 1);
define('FANN_E_NO_ERROR', 0);
define('FANN_E_CANT_OPEN_CONFIG_R', 1);
define('FANN_E_CANT_OPEN_CONFIG_W', 2);
define('FANN_E_WRONG_CONFIG_VERSION', 3);
define('FANN_E_CANT_READ_CONFIG', 4);
define('FANN_E_CANT_READ_NEURON', 5);
define('FANN_E_CANT_READ_CONNECTIONS', 6);
define('FANN_E_WRONG_NUM_CONNECTIONS', 7);
define('FANN_E_CANT_OPEN_TD_W', 8);
define('FANN_E_CANT_OPEN_TD_R', 9);
define('FANN_E_CANT_READ_TD', 10);
define('FANN_E_CANT_ALLOCATE_MEM', 11);
define('FANN_E_CANT_TRAIN_ACTIVATION', 12);
define('FANN_E_CANT_USE_ACTIVATION', 13);
define('FANN_E_TRAIN_DATA_MISMATCH', 14);
define('FANN_E_CANT_USE_TRAIN_ALG', 15);
define('FANN_E_TRAIN_DATA_SUBSET', 16);
define('FANN_E_INDEX_OUT_OF_BOUND', 17);
define('FANN_E_SCALE_NOT_PRESENT', 18);
define('FANN_E_INPUT_NO_MATCH', 19);
define('FANN_E_OUTPUT_NO_MATCH', 20);

define('FANN_VERSION', '2.2');
// End of Fann v.1.0
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!