Current File : //usr/lib/python3/dist-packages/jinja2/parser.py
"""Parse tokens from the lexer into nodes for the compiler."""
import typing
import typing as t

from . import nodes
from .exceptions import TemplateAssertionError
from .exceptions import TemplateSyntaxError
from .lexer import describe_token
from .lexer import describe_token_expr

if t.TYPE_CHECKING:
    import typing_extensions as te
    from .environment import Environment

_ImportInclude = t.TypeVar("_ImportInclude", nodes.Import, nodes.Include)
_MacroCall = t.TypeVar("_MacroCall", nodes.Macro, nodes.CallBlock)

_statement_keywords = frozenset(
    [
        "for",
        "if",
        "block",
        "extends",
        "print",
        "macro",
        "include",
        "from",
        "import",
        "set",
        "with",
        "autoescape",
    ]
)
_compare_operators = frozenset(["eq", "ne", "lt", "lteq", "gt", "gteq"])

_math_nodes: t.Dict[str, t.Type[nodes.Expr]] = {
    "add": nodes.Add,
    "sub": nodes.Sub,
    "mul": nodes.Mul,
    "div": nodes.Div,
    "floordiv": nodes.FloorDiv,
    "mod": nodes.Mod,
}


class Parser:
    """This is the central parsing class Jinja uses.  It's passed to
    extensions and can be used to parse expressions or statements.
    """

    def __init__(
        self,
        environment: "Environment",
        source: str,
        name: t.Optional[str] = None,
        filename: t.Optional[str] = None,
        state: t.Optional[str] = None,
    ) -> None:
        self.environment = environment
        self.stream = environment._tokenize(source, name, filename, state)
        self.name = name
        self.filename = filename
        self.closed = False
        self.extensions: t.Dict[
            str, t.Callable[["Parser"], t.Union[nodes.Node, t.List[nodes.Node]]]
        ] = {}
        for extension in environment.iter_extensions():
            for tag in extension.tags:
                self.extensions[tag] = extension.parse
        self._last_identifier = 0
        self._tag_stack: t.List[str] = []
        self._end_token_stack: t.List[t.Tuple[str, ...]] = []

    def fail(
        self,
        msg: str,
        lineno: t.Optional[int] = None,
        exc: t.Type[TemplateSyntaxError] = TemplateSyntaxError,
    ) -> "te.NoReturn":
        """Convenience method that raises `exc` with the message, passed
        line number or last line number as well as the current name and
        filename.
        """
        if lineno is None:
            lineno = self.stream.current.lineno
        raise exc(msg, lineno, self.name, self.filename)

    def _fail_ut_eof(
        self,
        name: t.Optional[str],
        end_token_stack: t.List[t.Tuple[str, ...]],
        lineno: t.Optional[int],
    ) -> "te.NoReturn":
        expected: t.Set[str] = set()
        for exprs in end_token_stack:
            expected.update(map(describe_token_expr, exprs))
        if end_token_stack:
            currently_looking: t.Optional[str] = " or ".join(
                map(repr, map(describe_token_expr, end_token_stack[-1]))
            )
        else:
            currently_looking = None

        if name is None:
            message = ["Unexpected end of template."]
        else:
            message = [f"Encountered unknown tag {name!r}."]

        if currently_looking:
            if name is not None and name in expected:
                message.append(
                    "You probably made a nesting mistake. Jinja is expecting this tag,"
                    f" but currently looking for {currently_looking}."
                )
            else:
                message.append(
                    f"Jinja was looking for the following tags: {currently_looking}."
                )

        if self._tag_stack:
            message.append(
                "The innermost block that needs to be closed is"
                f" {self._tag_stack[-1]!r}."
            )

        self.fail(" ".join(message), lineno)

    def fail_unknown_tag(
        self, name: str, lineno: t.Optional[int] = None
    ) -> "te.NoReturn":
        """Called if the parser encounters an unknown tag.  Tries to fail
        with a human readable error message that could help to identify
        the problem.
        """
        self._fail_ut_eof(name, self._end_token_stack, lineno)

    def fail_eof(
        self,
        end_tokens: t.Optional[t.Tuple[str, ...]] = None,
        lineno: t.Optional[int] = None,
    ) -> "te.NoReturn":
        """Like fail_unknown_tag but for end of template situations."""
        stack = list(self._end_token_stack)
        if end_tokens is not None:
            stack.append(end_tokens)
        self._fail_ut_eof(None, stack, lineno)

    def is_tuple_end(
        self, extra_end_rules: t.Optional[t.Tuple[str, ...]] = None
    ) -> bool:
        """Are we at the end of a tuple?"""
        if self.stream.current.type in ("variable_end", "block_end", "rparen"):
            return True
        elif extra_end_rules is not None:
            return self.stream.current.test_any(extra_end_rules)  # type: ignore
        return False

    def free_identifier(self, lineno: t.Optional[int] = None) -> nodes.InternalName:
        """Return a new free identifier as :class:`~jinja2.nodes.InternalName`."""
        self._last_identifier += 1
        rv = object.__new__(nodes.InternalName)
        nodes.Node.__init__(rv, f"fi{self._last_identifier}", lineno=lineno)
        return rv

    def parse_statement(self) -> t.Union[nodes.Node, t.List[nodes.Node]]:
        """Parse a single statement."""
        token = self.stream.current
        if token.type != "name":
            self.fail("tag name expected", token.lineno)
        self._tag_stack.append(token.value)
        pop_tag = True
        try:
            if token.value in _statement_keywords:
                f = getattr(self, f"parse_{self.stream.current.value}")
                return f()  # type: ignore
            if token.value == "call":
                return self.parse_call_block()
            if token.value == "filter":
                return self.parse_filter_block()
            ext = self.extensions.get(token.value)
            if ext is not None:
                return ext(self)

            # did not work out, remove the token we pushed by accident
            # from the stack so that the unknown tag fail function can
            # produce a proper error message.
            self._tag_stack.pop()
            pop_tag = False
            self.fail_unknown_tag(token.value, token.lineno)
        finally:
            if pop_tag:
                self._tag_stack.pop()

    def parse_statements(
        self, end_tokens: t.Tuple[str, ...], drop_needle: bool = False
    ) -> t.List[nodes.Node]:
        """Parse multiple statements into a list until one of the end tokens
        is reached.  This is used to parse the body of statements as it also
        parses template data if appropriate.  The parser checks first if the
        current token is a colon and skips it if there is one.  Then it checks
        for the block end and parses until if one of the `end_tokens` is
        reached.  Per default the active token in the stream at the end of
        the call is the matched end token.  If this is not wanted `drop_needle`
        can be set to `True` and the end token is removed.
        """
        # the first token may be a colon for python compatibility
        self.stream.skip_if("colon")

        # in the future it would be possible to add whole code sections
        # by adding some sort of end of statement token and parsing those here.
        self.stream.expect("block_end")
        result = self.subparse(end_tokens)

        # we reached the end of the template too early, the subparser
        # does not check for this, so we do that now
        if self.stream.current.type == "eof":
            self.fail_eof(end_tokens)

        if drop_needle:
            next(self.stream)
        return result

    def parse_set(self) -> t.Union[nodes.Assign, nodes.AssignBlock]:
        """Parse an assign statement."""
        lineno = next(self.stream).lineno
        target = self.parse_assign_target(with_namespace=True)
        if self.stream.skip_if("assign"):
            expr = self.parse_tuple()
            return nodes.Assign(target, expr, lineno=lineno)
        filter_node = self.parse_filter(None)
        body = self.parse_statements(("name:endset",), drop_needle=True)
        return nodes.AssignBlock(target, filter_node, body, lineno=lineno)

    def parse_for(self) -> nodes.For:
        """Parse a for loop."""
        lineno = self.stream.expect("name:for").lineno
        target = self.parse_assign_target(extra_end_rules=("name:in",))
        self.stream.expect("name:in")
        iter = self.parse_tuple(
            with_condexpr=False, extra_end_rules=("name:recursive",)
        )
        test = None
        if self.stream.skip_if("name:if"):
            test = self.parse_expression()
        recursive = self.stream.skip_if("name:recursive")
        body = self.parse_statements(("name:endfor", "name:else"))
        if next(self.stream).value == "endfor":
            else_ = []
        else:
            else_ = self.parse_statements(("name:endfor",), drop_needle=True)
        return nodes.For(target, iter, body, else_, test, recursive, lineno=lineno)

    def parse_if(self) -> nodes.If:
        """Parse an if construct."""
        node = result = nodes.If(lineno=self.stream.expect("name:if").lineno)
        while True:
            node.test = self.parse_tuple(with_condexpr=False)
            node.body = self.parse_statements(("name:elif", "name:else", "name:endif"))
            node.elif_ = []
            node.else_ = []
            token = next(self.stream)
            if token.test("name:elif"):
                node = nodes.If(lineno=self.stream.current.lineno)
                result.elif_.append(node)
                continue
            elif token.test("name:else"):
                result.else_ = self.parse_statements(("name:endif",), drop_needle=True)
            break
        return result

    def parse_with(self) -> nodes.With:
        node = nodes.With(lineno=next(self.stream).lineno)
        targets: t.List[nodes.Expr] = []
        values: t.List[nodes.Expr] = []
        while self.stream.current.type != "block_end":
            if targets:
                self.stream.expect("comma")
            target = self.parse_assign_target()
            target.set_ctx("param")
            targets.append(target)
            self.stream.expect("assign")
            values.append(self.parse_expression())
        node.targets = targets
        node.values = values
        node.body = self.parse_statements(("name:endwith",), drop_needle=True)
        return node

    def parse_autoescape(self) -> nodes.Scope:
        node = nodes.ScopedEvalContextModifier(lineno=next(self.stream).lineno)
        node.options = [nodes.Keyword("autoescape", self.parse_expression())]
        node.body = self.parse_statements(("name:endautoescape",), drop_needle=True)
        return nodes.Scope([node])

    def parse_block(self) -> nodes.Block:
        node = nodes.Block(lineno=next(self.stream).lineno)
        node.name = self.stream.expect("name").value
        node.scoped = self.stream.skip_if("name:scoped")
        node.required = self.stream.skip_if("name:required")

        # common problem people encounter when switching from django
        # to jinja.  we do not support hyphens in block names, so let's
        # raise a nicer error message in that case.
        if self.stream.current.type == "sub":
            self.fail(
                "Block names in Jinja have to be valid Python identifiers and may not"
                " contain hyphens, use an underscore instead."
            )

        node.body = self.parse_statements(("name:endblock",), drop_needle=True)

        # enforce that required blocks only contain whitespace or comments
        # by asserting that the body, if not empty, is just TemplateData nodes
        # with whitespace data
        if node.required and not all(
            isinstance(child, nodes.TemplateData) and child.data.isspace()
            for body in node.body
            for child in body.nodes  # type: ignore
        ):
            self.fail("Required blocks can only contain comments or whitespace")

        self.stream.skip_if("name:" + node.name)
        return node

    def parse_extends(self) -> nodes.Extends:
        node = nodes.Extends(lineno=next(self.stream).lineno)
        node.template = self.parse_expression()
        return node

    def parse_import_context(
        self, node: _ImportInclude, default: bool
    ) -> _ImportInclude:
        if self.stream.current.test_any(
            "name:with", "name:without"
        ) and self.stream.look().test("name:context"):
            node.with_context = next(self.stream).value == "with"
            self.stream.skip()
        else:
            node.with_context = default
        return node

    def parse_include(self) -> nodes.Include:
        node = nodes.Include(lineno=next(self.stream).lineno)
        node.template = self.parse_expression()
        if self.stream.current.test("name:ignore") and self.stream.look().test(
            "name:missing"
        ):
            node.ignore_missing = True
            self.stream.skip(2)
        else:
            node.ignore_missing = False
        return self.parse_import_context(node, True)

    def parse_import(self) -> nodes.Import:
        node = nodes.Import(lineno=next(self.stream).lineno)
        node.template = self.parse_expression()
        self.stream.expect("name:as")
        node.target = self.parse_assign_target(name_only=True).name
        return self.parse_import_context(node, False)

    def parse_from(self) -> nodes.FromImport:
        node = nodes.FromImport(lineno=next(self.stream).lineno)
        node.template = self.parse_expression()
        self.stream.expect("name:import")
        node.names = []

        def parse_context() -> bool:
            if self.stream.current.value in {
                "with",
                "without",
            } and self.stream.look().test("name:context"):
                node.with_context = next(self.stream).value == "with"
                self.stream.skip()
                return True
            return False

        while True:
            if node.names:
                self.stream.expect("comma")
            if self.stream.current.type == "name":
                if parse_context():
                    break
                target = self.parse_assign_target(name_only=True)
                if target.name.startswith("_"):
                    self.fail(
                        "names starting with an underline can not be imported",
                        target.lineno,
                        exc=TemplateAssertionError,
                    )
                if self.stream.skip_if("name:as"):
                    alias = self.parse_assign_target(name_only=True)
                    node.names.append((target.name, alias.name))
                else:
                    node.names.append(target.name)
                if parse_context() or self.stream.current.type != "comma":
                    break
            else:
                self.stream.expect("name")
        if not hasattr(node, "with_context"):
            node.with_context = False
        return node

    def parse_signature(self, node: _MacroCall) -> None:
        args = node.args = []
        defaults = node.defaults = []
        self.stream.expect("lparen")
        while self.stream.current.type != "rparen":
            if args:
                self.stream.expect("comma")
            arg = self.parse_assign_target(name_only=True)
            arg.set_ctx("param")
            if self.stream.skip_if("assign"):
                defaults.append(self.parse_expression())
            elif defaults:
                self.fail("non-default argument follows default argument")
            args.append(arg)
        self.stream.expect("rparen")

    def parse_call_block(self) -> nodes.CallBlock:
        node = nodes.CallBlock(lineno=next(self.stream).lineno)
        if self.stream.current.type == "lparen":
            self.parse_signature(node)
        else:
            node.args = []
            node.defaults = []

        call_node = self.parse_expression()
        if not isinstance(call_node, nodes.Call):
            self.fail("expected call", node.lineno)
        node.call = call_node
        node.body = self.parse_statements(("name:endcall",), drop_needle=True)
        return node

    def parse_filter_block(self) -> nodes.FilterBlock:
        node = nodes.FilterBlock(lineno=next(self.stream).lineno)
        node.filter = self.parse_filter(None, start_inline=True)  # type: ignore
        node.body = self.parse_statements(("name:endfilter",), drop_needle=True)
        return node

    def parse_macro(self) -> nodes.Macro:
        node = nodes.Macro(lineno=next(self.stream).lineno)
        node.name = self.parse_assign_target(name_only=True).name
        self.parse_signature(node)
        node.body = self.parse_statements(("name:endmacro",), drop_needle=True)
        return node

    def parse_print(self) -> nodes.Output:
        node = nodes.Output(lineno=next(self.stream).lineno)
        node.nodes = []
        while self.stream.current.type != "block_end":
            if node.nodes:
                self.stream.expect("comma")
            node.nodes.append(self.parse_expression())
        return node

    @typing.overload
    def parse_assign_target(
        self, with_tuple: bool = ..., name_only: "te.Literal[True]" = ...
    ) -> nodes.Name:
        ...

    @typing.overload
    def parse_assign_target(
        self,
        with_tuple: bool = True,
        name_only: bool = False,
        extra_end_rules: t.Optional[t.Tuple[str, ...]] = None,
        with_namespace: bool = False,
    ) -> t.Union[nodes.NSRef, nodes.Name, nodes.Tuple]:
        ...

    def parse_assign_target(
        self,
        with_tuple: bool = True,
        name_only: bool = False,
        extra_end_rules: t.Optional[t.Tuple[str, ...]] = None,
        with_namespace: bool = False,
    ) -> t.Union[nodes.NSRef, nodes.Name, nodes.Tuple]:
        """Parse an assignment target.  As Jinja allows assignments to
        tuples, this function can parse all allowed assignment targets.  Per
        default assignments to tuples are parsed, that can be disable however
        by setting `with_tuple` to `False`.  If only assignments to names are
        wanted `name_only` can be set to `True`.  The `extra_end_rules`
        parameter is forwarded to the tuple parsing function.  If
        `with_namespace` is enabled, a namespace assignment may be parsed.
        """
        target: nodes.Expr

        if with_namespace and self.stream.look().type == "dot":
            token = self.stream.expect("name")
            next(self.stream)  # dot
            attr = self.stream.expect("name")
            target = nodes.NSRef(token.value, attr.value, lineno=token.lineno)
        elif name_only:
            token = self.stream.expect("name")
            target = nodes.Name(token.value, "store", lineno=token.lineno)
        else:
            if with_tuple:
                target = self.parse_tuple(
                    simplified=True, extra_end_rules=extra_end_rules
                )
            else:
                target = self.parse_primary()

            target.set_ctx("store")

        if not target.can_assign():
            self.fail(
                f"can't assign to {type(target).__name__.lower()!r}", target.lineno
            )

        return target  # type: ignore

    def parse_expression(self, with_condexpr: bool = True) -> nodes.Expr:
        """Parse an expression.  Per default all expressions are parsed, if
        the optional `with_condexpr` parameter is set to `False` conditional
        expressions are not parsed.
        """
        if with_condexpr:
            return self.parse_condexpr()
        return self.parse_or()

    def parse_condexpr(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        expr1 = self.parse_or()
        expr3: t.Optional[nodes.Expr]

        while self.stream.skip_if("name:if"):
            expr2 = self.parse_or()
            if self.stream.skip_if("name:else"):
                expr3 = self.parse_condexpr()
            else:
                expr3 = None
            expr1 = nodes.CondExpr(expr2, expr1, expr3, lineno=lineno)
            lineno = self.stream.current.lineno
        return expr1

    def parse_or(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        left = self.parse_and()
        while self.stream.skip_if("name:or"):
            right = self.parse_and()
            left = nodes.Or(left, right, lineno=lineno)
            lineno = self.stream.current.lineno
        return left

    def parse_and(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        left = self.parse_not()
        while self.stream.skip_if("name:and"):
            right = self.parse_not()
            left = nodes.And(left, right, lineno=lineno)
            lineno = self.stream.current.lineno
        return left

    def parse_not(self) -> nodes.Expr:
        if self.stream.current.test("name:not"):
            lineno = next(self.stream).lineno
            return nodes.Not(self.parse_not(), lineno=lineno)
        return self.parse_compare()

    def parse_compare(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        expr = self.parse_math1()
        ops = []
        while True:
            token_type = self.stream.current.type
            if token_type in _compare_operators:
                next(self.stream)
                ops.append(nodes.Operand(token_type, self.parse_math1()))
            elif self.stream.skip_if("name:in"):
                ops.append(nodes.Operand("in", self.parse_math1()))
            elif self.stream.current.test("name:not") and self.stream.look().test(
                "name:in"
            ):
                self.stream.skip(2)
                ops.append(nodes.Operand("notin", self.parse_math1()))
            else:
                break
            lineno = self.stream.current.lineno
        if not ops:
            return expr
        return nodes.Compare(expr, ops, lineno=lineno)

    def parse_math1(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        left = self.parse_concat()
        while self.stream.current.type in ("add", "sub"):
            cls = _math_nodes[self.stream.current.type]
            next(self.stream)
            right = self.parse_concat()
            left = cls(left, right, lineno=lineno)
            lineno = self.stream.current.lineno
        return left

    def parse_concat(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        args = [self.parse_math2()]
        while self.stream.current.type == "tilde":
            next(self.stream)
            args.append(self.parse_math2())
        if len(args) == 1:
            return args[0]
        return nodes.Concat(args, lineno=lineno)

    def parse_math2(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        left = self.parse_pow()
        while self.stream.current.type in ("mul", "div", "floordiv", "mod"):
            cls = _math_nodes[self.stream.current.type]
            next(self.stream)
            right = self.parse_pow()
            left = cls(left, right, lineno=lineno)
            lineno = self.stream.current.lineno
        return left

    def parse_pow(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        left = self.parse_unary()
        while self.stream.current.type == "pow":
            next(self.stream)
            right = self.parse_unary()
            left = nodes.Pow(left, right, lineno=lineno)
            lineno = self.stream.current.lineno
        return left

    def parse_unary(self, with_filter: bool = True) -> nodes.Expr:
        token_type = self.stream.current.type
        lineno = self.stream.current.lineno
        node: nodes.Expr

        if token_type == "sub":
            next(self.stream)
            node = nodes.Neg(self.parse_unary(False), lineno=lineno)
        elif token_type == "add":
            next(self.stream)
            node = nodes.Pos(self.parse_unary(False), lineno=lineno)
        else:
            node = self.parse_primary()
        node = self.parse_postfix(node)
        if with_filter:
            node = self.parse_filter_expr(node)
        return node

    def parse_primary(self) -> nodes.Expr:
        token = self.stream.current
        node: nodes.Expr
        if token.type == "name":
            if token.value in ("true", "false", "True", "False"):
                node = nodes.Const(token.value in ("true", "True"), lineno=token.lineno)
            elif token.value in ("none", "None"):
                node = nodes.Const(None, lineno=token.lineno)
            else:
                node = nodes.Name(token.value, "load", lineno=token.lineno)
            next(self.stream)
        elif token.type == "string":
            next(self.stream)
            buf = [token.value]
            lineno = token.lineno
            while self.stream.current.type == "string":
                buf.append(self.stream.current.value)
                next(self.stream)
            node = nodes.Const("".join(buf), lineno=lineno)
        elif token.type in ("integer", "float"):
            next(self.stream)
            node = nodes.Const(token.value, lineno=token.lineno)
        elif token.type == "lparen":
            next(self.stream)
            node = self.parse_tuple(explicit_parentheses=True)
            self.stream.expect("rparen")
        elif token.type == "lbracket":
            node = self.parse_list()
        elif token.type == "lbrace":
            node = self.parse_dict()
        else:
            self.fail(f"unexpected {describe_token(token)!r}", token.lineno)
        return node

    def parse_tuple(
        self,
        simplified: bool = False,
        with_condexpr: bool = True,
        extra_end_rules: t.Optional[t.Tuple[str, ...]] = None,
        explicit_parentheses: bool = False,
    ) -> t.Union[nodes.Tuple, nodes.Expr]:
        """Works like `parse_expression` but if multiple expressions are
        delimited by a comma a :class:`~jinja2.nodes.Tuple` node is created.
        This method could also return a regular expression instead of a tuple
        if no commas where found.

        The default parsing mode is a full tuple.  If `simplified` is `True`
        only names and literals are parsed.  The `no_condexpr` parameter is
        forwarded to :meth:`parse_expression`.

        Because tuples do not require delimiters and may end in a bogus comma
        an extra hint is needed that marks the end of a tuple.  For example
        for loops support tuples between `for` and `in`.  In that case the
        `extra_end_rules` is set to ``['name:in']``.

        `explicit_parentheses` is true if the parsing was triggered by an
        expression in parentheses.  This is used to figure out if an empty
        tuple is a valid expression or not.
        """
        lineno = self.stream.current.lineno
        if simplified:
            parse = self.parse_primary
        elif with_condexpr:
            parse = self.parse_expression
        else:

            def parse() -> nodes.Expr:
                return self.parse_expression(with_condexpr=False)

        args: t.List[nodes.Expr] = []
        is_tuple = False

        while True:
            if args:
                self.stream.expect("comma")
            if self.is_tuple_end(extra_end_rules):
                break
            args.append(parse())
            if self.stream.current.type == "comma":
                is_tuple = True
            else:
                break
            lineno = self.stream.current.lineno

        if not is_tuple:
            if args:
                return args[0]

            # if we don't have explicit parentheses, an empty tuple is
            # not a valid expression.  This would mean nothing (literally
            # nothing) in the spot of an expression would be an empty
            # tuple.
            if not explicit_parentheses:
                self.fail(
                    "Expected an expression,"
                    f" got {describe_token(self.stream.current)!r}"
                )

        return nodes.Tuple(args, "load", lineno=lineno)

    def parse_list(self) -> nodes.List:
        token = self.stream.expect("lbracket")
        items: t.List[nodes.Expr] = []
        while self.stream.current.type != "rbracket":
            if items:
                self.stream.expect("comma")
            if self.stream.current.type == "rbracket":
                break
            items.append(self.parse_expression())
        self.stream.expect("rbracket")
        return nodes.List(items, lineno=token.lineno)

    def parse_dict(self) -> nodes.Dict:
        token = self.stream.expect("lbrace")
        items: t.List[nodes.Pair] = []
        while self.stream.current.type != "rbrace":
            if items:
                self.stream.expect("comma")
            if self.stream.current.type == "rbrace":
                break
            key = self.parse_expression()
            self.stream.expect("colon")
            value = self.parse_expression()
            items.append(nodes.Pair(key, value, lineno=key.lineno))
        self.stream.expect("rbrace")
        return nodes.Dict(items, lineno=token.lineno)

    def parse_postfix(self, node: nodes.Expr) -> nodes.Expr:
        while True:
            token_type = self.stream.current.type
            if token_type == "dot" or token_type == "lbracket":
                node = self.parse_subscript(node)
            # calls are valid both after postfix expressions (getattr
            # and getitem) as well as filters and tests
            elif token_type == "lparen":
                node = self.parse_call(node)
            else:
                break
        return node

    def parse_filter_expr(self, node: nodes.Expr) -> nodes.Expr:
        while True:
            token_type = self.stream.current.type
            if token_type == "pipe":
                node = self.parse_filter(node)  # type: ignore
            elif token_type == "name" and self.stream.current.value == "is":
                node = self.parse_test(node)
            # calls are valid both after postfix expressions (getattr
            # and getitem) as well as filters and tests
            elif token_type == "lparen":
                node = self.parse_call(node)
            else:
                break
        return node

    def parse_subscript(
        self, node: nodes.Expr
    ) -> t.Union[nodes.Getattr, nodes.Getitem]:
        token = next(self.stream)
        arg: nodes.Expr

        if token.type == "dot":
            attr_token = self.stream.current
            next(self.stream)
            if attr_token.type == "name":
                return nodes.Getattr(
                    node, attr_token.value, "load", lineno=token.lineno
                )
            elif attr_token.type != "integer":
                self.fail("expected name or number", attr_token.lineno)
            arg = nodes.Const(attr_token.value, lineno=attr_token.lineno)
            return nodes.Getitem(node, arg, "load", lineno=token.lineno)
        if token.type == "lbracket":
            args: t.List[nodes.Expr] = []
            while self.stream.current.type != "rbracket":
                if args:
                    self.stream.expect("comma")
                args.append(self.parse_subscribed())
            self.stream.expect("rbracket")
            if len(args) == 1:
                arg = args[0]
            else:
                arg = nodes.Tuple(args, "load", lineno=token.lineno)
            return nodes.Getitem(node, arg, "load", lineno=token.lineno)
        self.fail("expected subscript expression", token.lineno)

    def parse_subscribed(self) -> nodes.Expr:
        lineno = self.stream.current.lineno
        args: t.List[t.Optional[nodes.Expr]]

        if self.stream.current.type == "colon":
            next(self.stream)
            args = [None]
        else:
            node = self.parse_expression()
            if self.stream.current.type != "colon":
                return node
            next(self.stream)
            args = [node]

        if self.stream.current.type == "colon":
            args.append(None)
        elif self.stream.current.type not in ("rbracket", "comma"):
            args.append(self.parse_expression())
        else:
            args.append(None)

        if self.stream.current.type == "colon":
            next(self.stream)
            if self.stream.current.type not in ("rbracket", "comma"):
                args.append(self.parse_expression())
            else:
                args.append(None)
        else:
            args.append(None)

        return nodes.Slice(lineno=lineno, *args)

    def parse_call_args(self) -> t.Tuple:
        token = self.stream.expect("lparen")
        args = []
        kwargs = []
        dyn_args = None
        dyn_kwargs = None
        require_comma = False

        def ensure(expr: bool) -> None:
            if not expr:
                self.fail("invalid syntax for function call expression", token.lineno)

        while self.stream.current.type != "rparen":
            if require_comma:
                self.stream.expect("comma")

                # support for trailing comma
                if self.stream.current.type == "rparen":
                    break

            if self.stream.current.type == "mul":
                ensure(dyn_args is None and dyn_kwargs is None)
                next(self.stream)
                dyn_args = self.parse_expression()
            elif self.stream.current.type == "pow":
                ensure(dyn_kwargs is None)
                next(self.stream)
                dyn_kwargs = self.parse_expression()
            else:
                if (
                    self.stream.current.type == "name"
                    and self.stream.look().type == "assign"
                ):
                    # Parsing a kwarg
                    ensure(dyn_kwargs is None)
                    key = self.stream.current.value
                    self.stream.skip(2)
                    value = self.parse_expression()
                    kwargs.append(nodes.Keyword(key, value, lineno=value.lineno))
                else:
                    # Parsing an arg
                    ensure(dyn_args is None and dyn_kwargs is None and not kwargs)
                    args.append(self.parse_expression())

            require_comma = True

        self.stream.expect("rparen")
        return args, kwargs, dyn_args, dyn_kwargs

    def parse_call(self, node: nodes.Expr) -> nodes.Call:
        # The lparen will be expected in parse_call_args, but the lineno
        # needs to be recorded before the stream is advanced.
        token = self.stream.current
        args, kwargs, dyn_args, dyn_kwargs = self.parse_call_args()
        return nodes.Call(node, args, kwargs, dyn_args, dyn_kwargs, lineno=token.lineno)

    def parse_filter(
        self, node: t.Optional[nodes.Expr], start_inline: bool = False
    ) -> t.Optional[nodes.Expr]:
        while self.stream.current.type == "pipe" or start_inline:
            if not start_inline:
                next(self.stream)
            token = self.stream.expect("name")
            name = token.value
            while self.stream.current.type == "dot":
                next(self.stream)
                name += "." + self.stream.expect("name").value
            if self.stream.current.type == "lparen":
                args, kwargs, dyn_args, dyn_kwargs = self.parse_call_args()
            else:
                args = []
                kwargs = []
                dyn_args = dyn_kwargs = None
            node = nodes.Filter(
                node, name, args, kwargs, dyn_args, dyn_kwargs, lineno=token.lineno
            )
            start_inline = False
        return node

    def parse_test(self, node: nodes.Expr) -> nodes.Expr:
        token = next(self.stream)
        if self.stream.current.test("name:not"):
            next(self.stream)
            negated = True
        else:
            negated = False
        name = self.stream.expect("name").value
        while self.stream.current.type == "dot":
            next(self.stream)
            name += "." + self.stream.expect("name").value
        dyn_args = dyn_kwargs = None
        kwargs = []
        if self.stream.current.type == "lparen":
            args, kwargs, dyn_args, dyn_kwargs = self.parse_call_args()
        elif self.stream.current.type in {
            "name",
            "string",
            "integer",
            "float",
            "lparen",
            "lbracket",
            "lbrace",
        } and not self.stream.current.test_any("name:else", "name:or", "name:and"):
            if self.stream.current.test("name:is"):
                self.fail("You cannot chain multiple tests with is")
            arg_node = self.parse_primary()
            arg_node = self.parse_postfix(arg_node)
            args = [arg_node]
        else:
            args = []
        node = nodes.Test(
            node, name, args, kwargs, dyn_args, dyn_kwargs, lineno=token.lineno
        )
        if negated:
            node = nodes.Not(node, lineno=token.lineno)
        return node

    def subparse(
        self, end_tokens: t.Optional[t.Tuple[str, ...]] = None
    ) -> t.List[nodes.Node]:
        body: t.List[nodes.Node] = []
        data_buffer: t.List[nodes.Node] = []
        add_data = data_buffer.append

        if end_tokens is not None:
            self._end_token_stack.append(end_tokens)

        def flush_data() -> None:
            if data_buffer:
                lineno = data_buffer[0].lineno
                body.append(nodes.Output(data_buffer[:], lineno=lineno))
                del data_buffer[:]

        try:
            while self.stream:
                token = self.stream.current
                if token.type == "data":
                    if token.value:
                        add_data(nodes.TemplateData(token.value, lineno=token.lineno))
                    next(self.stream)
                elif token.type == "variable_begin":
                    next(self.stream)
                    add_data(self.parse_tuple(with_condexpr=True))
                    self.stream.expect("variable_end")
                elif token.type == "block_begin":
                    flush_data()
                    next(self.stream)
                    if end_tokens is not None and self.stream.current.test_any(
                        *end_tokens
                    ):
                        return body
                    rv = self.parse_statement()
                    if isinstance(rv, list):
                        body.extend(rv)
                    else:
                        body.append(rv)
                    self.stream.expect("block_end")
                else:
                    raise AssertionError("internal parsing error")

            flush_data()
        finally:
            if end_tokens is not None:
                self._end_token_stack.pop()
        return body

    def parse(self) -> nodes.Template:
        """Parse the whole template into a `Template` node."""
        result = nodes.Template(self.subparse(), lineno=1)
        result.set_environment(self.environment)
        return result
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!