Current File : //proc/thread-self/root/usr/src/linux-headers-6.8.0-59/include/linux/maple_tree.h
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef _LINUX_MAPLE_TREE_H
#define _LINUX_MAPLE_TREE_H
/*
 * Maple Tree - An RCU-safe adaptive tree for storing ranges
 * Copyright (c) 2018-2022 Oracle
 * Authors:     Liam R. Howlett <Liam.Howlett@Oracle.com>
 *              Matthew Wilcox <willy@infradead.org>
 */

#include <linux/kernel.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
/* #define CONFIG_MAPLE_RCU_DISABLED */

/*
 * Allocated nodes are mutable until they have been inserted into the tree,
 * at which time they cannot change their type until they have been removed
 * from the tree and an RCU grace period has passed.
 *
 * Removed nodes have their ->parent set to point to themselves.  RCU readers
 * check ->parent before relying on the value that they loaded from the
 * slots array.  This lets us reuse the slots array for the RCU head.
 *
 * Nodes in the tree point to their parent unless bit 0 is set.
 */
#if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
/* 64bit sizes */
#define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
#define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
#define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
#define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
#else
/* 32bit sizes */
#define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
#define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
#define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
#define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
#endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */

#define MAPLE_NODE_MASK		255UL

/*
 * The node->parent of the root node has bit 0 set and the rest of the pointer
 * is a pointer to the tree itself.  No more bits are available in this pointer
 * (on m68k, the data structure may only be 2-byte aligned).
 *
 * Internal non-root nodes can only have maple_range_* nodes as parents.  The
 * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
 * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
 * extra bit to store the offset.  This extra bit comes from a reuse of the last
 * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
 * is part of the type or the slot.
 *
 * Once the type is decided, the decision of an allocation range type or a range
 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
 * flag.
 *
 *  Node types:
 *   0x??1 = Root
 *   0x?00 = 16 bit nodes
 *   0x010 = 32 bit nodes
 *   0x110 = 64 bit nodes
 *
 *  Slot size and location in the parent pointer:
 *   type  : slot location
 *   0x??1 : Root
 *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
 *   0x010 : 32 bit values, type in 0-2, slot in 3-6
 *   0x110 : 64 bit values, type in 0-2, slot in 3-6
 */

/*
 * This metadata is used to optimize the gap updating code and in reverse
 * searching for gaps or any other code that needs to find the end of the data.
 */
struct maple_metadata {
	unsigned char end;
	unsigned char gap;
};

/*
 * Leaf nodes do not store pointers to nodes, they store user data.  Users may
 * store almost any bit pattern.  As noted above, the optimisation of storing an
 * entry at 0 in the root pointer cannot be done for data which have the bottom
 * two bits set to '10'.  We also reserve values with the bottom two bits set to
 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
 * return errnos as a negative errno shifted right by two bits and the bottom
 * two bits set to '10', and while choosing to store these values in the array
 * is not an error, it may lead to confusion if you're testing for an error with
 * mas_is_err().
 *
 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
 * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
 *
 * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
 * indicate that the tree is specifying ranges,  Pivots may appear in the
 * subtree with an entry attached to the value whereas keys are unique to a
 * specific position of a B-tree.  Pivot values are inclusive of the slot with
 * the same index.
 */

struct maple_range_64 {
	struct maple_pnode *parent;
	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
	union {
		void __rcu *slot[MAPLE_RANGE64_SLOTS];
		struct {
			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
			struct maple_metadata meta;
		};
	};
};

/*
 * At tree creation time, the user can specify that they're willing to trade off
 * storing fewer entries in a tree in return for storing more information in
 * each node.
 *
 * The maple tree supports recording the largest range of NULL entries available
 * in this node, also called gaps.  This optimises the tree for allocating a
 * range.
 */
struct maple_arange_64 {
	struct maple_pnode *parent;
	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
	unsigned long gap[MAPLE_ARANGE64_SLOTS];
	struct maple_metadata meta;
};

struct maple_alloc {
	unsigned long total;
	unsigned char node_count;
	unsigned int request_count;
	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
};

struct maple_topiary {
	struct maple_pnode *parent;
	struct maple_enode *next; /* Overlaps the pivot */
};

enum maple_type {
	maple_dense,
	maple_leaf_64,
	maple_range_64,
	maple_arange_64,
};


/**
 * DOC: Maple tree flags
 *
 * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
 * * MT_FLAGS_USE_RCU		- Operate in RCU mode
 * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
 * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
 * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
 * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
 * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
 * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
 *
 * MAPLE_HEIGHT_MAX	The largest height that can be stored
 */
#define MT_FLAGS_ALLOC_RANGE	0x01
#define MT_FLAGS_USE_RCU	0x02
#define MT_FLAGS_HEIGHT_OFFSET	0x02
#define MT_FLAGS_HEIGHT_MASK	0x7C
#define MT_FLAGS_LOCK_MASK	0x300
#define MT_FLAGS_LOCK_IRQ	0x100
#define MT_FLAGS_LOCK_BH	0x200
#define MT_FLAGS_LOCK_EXTERN	0x300
#define MT_FLAGS_ALLOC_WRAPPED	0x0800

#define MAPLE_HEIGHT_MAX	31


#define MAPLE_NODE_TYPE_MASK	0x0F
#define MAPLE_NODE_TYPE_SHIFT	0x03

#define MAPLE_RESERVED_RANGE	4096

#ifdef CONFIG_LOCKDEP
typedef struct lockdep_map *lockdep_map_p;
#define mt_lock_is_held(mt)                                             \
	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))

#define mt_write_lock_is_held(mt)					\
	(!(mt)->ma_external_lock ||					\
	 lock_is_held_type((mt)->ma_external_lock, 0))

#define mt_set_external_lock(mt, lock)					\
	(mt)->ma_external_lock = &(lock)->dep_map

#define mt_on_stack(mt)			(mt).ma_external_lock = NULL
#else
typedef struct { /* nothing */ } lockdep_map_p;
#define mt_lock_is_held(mt)		1
#define mt_write_lock_is_held(mt)	1
#define mt_set_external_lock(mt, lock)	do { } while (0)
#define mt_on_stack(mt)			do { } while (0)
#endif

/*
 * If the tree contains a single entry at index 0, it is usually stored in
 * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
 * '01' or '11' is stored in the root, but an entry which ends in '10' will be
 * stored in a node.  Bits 3-6 are used to store enum maple_type.
 *
 * The flags are used both to store some immutable information about this tree
 * (set at tree creation time) and dynamic information set under the spinlock.
 *
 * Another use of flags are to indicate global states of the tree.  This is the
 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
 * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
 * re-allocating and RCU freeing nodes when there is a single user.
 */
struct maple_tree {
	union {
		spinlock_t	ma_lock;
		lockdep_map_p	ma_external_lock;
	};
	unsigned int	ma_flags;
	void __rcu      *ma_root;
};

/**
 * MTREE_INIT() - Initialize a maple tree
 * @name: The maple tree name
 * @__flags: The maple tree flags
 *
 */
#define MTREE_INIT(name, __flags) {					\
	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
	.ma_flags = __flags,						\
	.ma_root = NULL,						\
}

/**
 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
 * @name: The tree name
 * @__flags: The maple tree flags
 * @__lock: The external lock
 */
#ifdef CONFIG_LOCKDEP
#define MTREE_INIT_EXT(name, __flags, __lock) {				\
	.ma_external_lock = &(__lock).dep_map,				\
	.ma_flags = (__flags),						\
	.ma_root = NULL,						\
}
#else
#define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
#endif

#define DEFINE_MTREE(name)						\
	struct maple_tree name = MTREE_INIT(name, 0)

#define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
#define mtree_lock_nested(mas, subclass) \
		spin_lock_nested((&(mt)->ma_lock), subclass)
#define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))

/*
 * The Maple Tree squeezes various bits in at various points which aren't
 * necessarily obvious.  Usually, this is done by observing that pointers are
 * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
 * don't use the high bits of pointers to store additional information because
 * we don't know what bits are unused on any given architecture.
 *
 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
 * low bits for our own purposes.  Nodes are currently of 4 types:
 * 1. Single pointer (Range is 0-0)
 * 2. Non-leaf Allocation Range nodes
 * 3. Non-leaf Range nodes
 * 4. Leaf Range nodes All nodes consist of a number of node slots,
 *    pivots, and a parent pointer.
 */

struct maple_node {
	union {
		struct {
			struct maple_pnode *parent;
			void __rcu *slot[MAPLE_NODE_SLOTS];
		};
		struct {
			void *pad;
			struct rcu_head rcu;
			struct maple_enode *piv_parent;
			unsigned char parent_slot;
			enum maple_type type;
			unsigned char slot_len;
			unsigned int ma_flags;
		};
		struct maple_range_64 mr64;
		struct maple_arange_64 ma64;
		struct maple_alloc alloc;
	};
};

/*
 * More complicated stores can cause two nodes to become one or three and
 * potentially alter the height of the tree.  Either half of the tree may need
 * to be rebalanced against the other.  The ma_topiary struct is used to track
 * which nodes have been 'cut' from the tree so that the change can be done
 * safely at a later date.  This is done to support RCU.
 */
struct ma_topiary {
	struct maple_enode *head;
	struct maple_enode *tail;
	struct maple_tree *mtree;
};

void *mtree_load(struct maple_tree *mt, unsigned long index);

int mtree_insert(struct maple_tree *mt, unsigned long index,
		void *entry, gfp_t gfp);
int mtree_insert_range(struct maple_tree *mt, unsigned long first,
		unsigned long last, void *entry, gfp_t gfp);
int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
		void *entry, unsigned long size, unsigned long min,
		unsigned long max, gfp_t gfp);
int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
		void *entry, unsigned long range_lo, unsigned long range_hi,
		unsigned long *next, gfp_t gfp);
int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
		void *entry, unsigned long size, unsigned long min,
		unsigned long max, gfp_t gfp);

int mtree_store_range(struct maple_tree *mt, unsigned long first,
		      unsigned long last, void *entry, gfp_t gfp);
int mtree_store(struct maple_tree *mt, unsigned long index,
		void *entry, gfp_t gfp);
void *mtree_erase(struct maple_tree *mt, unsigned long index);

int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);

void mtree_destroy(struct maple_tree *mt);
void __mt_destroy(struct maple_tree *mt);

/**
 * mtree_empty() - Determine if a tree has any present entries.
 * @mt: Maple Tree.
 *
 * Context: Any context.
 * Return: %true if the tree contains only NULL pointers.
 */
static inline bool mtree_empty(const struct maple_tree *mt)
{
	return mt->ma_root == NULL;
}

/* Advanced API */

/*
 * Maple State Status
 * ma_active means the maple state is pointing to a node and offset and can
 * continue operating on the tree.
 * ma_start means we have not searched the tree.
 * ma_root means we have searched the tree and the entry we found lives in
 * the root of the tree (ie it has index 0, length 1 and is the only entry in
 * the tree).
 * ma_none means we have searched the tree and there is no node in the
 * tree for this entry.  For example, we searched for index 1 in an empty
 * tree.  Or we have a tree which points to a full leaf node and we
 * searched for an entry which is larger than can be contained in that
 * leaf node.
 * ma_pause means the data within the maple state may be stale, restart the
 * operation
 * ma_overflow means the search has reached the upper limit of the search
 * ma_underflow means the search has reached the lower limit of the search
 * ma_error means there was an error, check the node for the error number.
 */
enum maple_status {
	ma_active,
	ma_start,
	ma_root,
	ma_none,
	ma_pause,
	ma_overflow,
	ma_underflow,
	ma_error,
};

/*
 * The maple state is defined in the struct ma_state and is used to keep track
 * of information during operations, and even between operations when using the
 * advanced API.
 *
 * If state->node has bit 0 set then it references a tree location which is not
 * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
 * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
 * node type.
 *
 * state->alloc either has a request number of nodes or an allocated node.  If
 * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
 * and the remaining bits are the value.  If state->alloc is a node, then the
 * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
 * storing more allocated nodes, a total number of nodes allocated, and the
 * node_count in this node.  node_count is the number of allocated nodes in this
 * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
 * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
 * by removing a node from the state->alloc node until state->alloc->node_count
 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
 * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
 * state->alloc into the pushed node's slot[0].
 *
 * The state also contains the implied min/max of the state->node, the depth of
 * this search, and the offset. The implied min/max are either from the parent
 * node or are 0-oo for the root node.  The depth is incremented or decremented
 * every time a node is walked down or up.  The offset is the slot/pivot of
 * interest in the node - either for reading or writing.
 *
 * When returning a value the maple state index and last respectively contain
 * the start and end of the range for the entry.  Ranges are inclusive in the
 * Maple Tree.
 *
 * The status of the state is used to determine how the next action should treat
 * the state.  For instance, if the status is ma_start then the next action
 * should start at the root of the tree and walk down.  If the status is
 * ma_pause then the node may be stale data and should be discarded.  If the
 * status is ma_overflow, then the last action hit the upper limit.
 *
 */
struct ma_state {
	struct maple_tree *tree;	/* The tree we're operating in */
	unsigned long index;		/* The index we're operating on - range start */
	unsigned long last;		/* The last index we're operating on - range end */
	struct maple_enode *node;	/* The node containing this entry */
	unsigned long min;		/* The minimum index of this node - implied pivot min */
	unsigned long max;		/* The maximum index of this node - implied pivot max */
	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
	enum maple_status status;	/* The status of the state (active, start, none, etc) */
	unsigned char depth;		/* depth of tree descent during write */
	unsigned char offset;
	unsigned char mas_flags;
	unsigned char end;		/* The end of the node */
};

struct ma_wr_state {
	struct ma_state *mas;
	struct maple_node *node;	/* Decoded mas->node */
	unsigned long r_min;		/* range min */
	unsigned long r_max;		/* range max */
	enum maple_type type;		/* mas->node type */
	unsigned char offset_end;	/* The offset where the write ends */
	unsigned long *pivots;		/* mas->node->pivots pointer */
	unsigned long end_piv;		/* The pivot at the offset end */
	void __rcu **slots;		/* mas->node->slots pointer */
	void *entry;			/* The entry to write */
	void *content;			/* The existing entry that is being overwritten */
};

#define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
#define mas_lock_nested(mas, subclass) \
		spin_lock_nested(&((mas)->tree->ma_lock), subclass)
#define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))

/*
 * Special values for ma_state.node.
 * MA_ERROR represents an errno.  After dropping the lock and attempting
 * to resolve the error, the walk would have to be restarted from the
 * top of the tree as the tree may have been modified.
 */
#define MA_ERROR(err) \
		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))

#define MA_STATE(name, mt, first, end)					\
	struct ma_state name = {					\
		.tree = mt,						\
		.index = first,						\
		.last = end,						\
		.node = NULL,						\
		.status = ma_start,					\
		.min = 0,						\
		.max = ULONG_MAX,					\
		.alloc = NULL,						\
		.mas_flags = 0,						\
	}

#define MA_WR_STATE(name, ma_state, wr_entry)				\
	struct ma_wr_state name = {					\
		.mas = ma_state,					\
		.content = NULL,					\
		.entry = wr_entry,					\
	}

#define MA_TOPIARY(name, tree)						\
	struct ma_topiary name = {					\
		.head = NULL,						\
		.tail = NULL,						\
		.mtree = tree,						\
	}

void *mas_walk(struct ma_state *mas);
void *mas_store(struct ma_state *mas, void *entry);
void *mas_erase(struct ma_state *mas);
int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
void mas_store_prealloc(struct ma_state *mas, void *entry);
void *mas_find(struct ma_state *mas, unsigned long max);
void *mas_find_range(struct ma_state *mas, unsigned long max);
void *mas_find_rev(struct ma_state *mas, unsigned long min);
void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
		void *entry, unsigned long range_lo, unsigned long range_hi,
		unsigned long *next, gfp_t gfp);

bool mas_nomem(struct ma_state *mas, gfp_t gfp);
void mas_pause(struct ma_state *mas);
void maple_tree_init(void);
void mas_destroy(struct ma_state *mas);
int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);

void *mas_prev(struct ma_state *mas, unsigned long min);
void *mas_prev_range(struct ma_state *mas, unsigned long max);
void *mas_next(struct ma_state *mas, unsigned long max);
void *mas_next_range(struct ma_state *mas, unsigned long max);

int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
		   unsigned long size);
/*
 * This finds an empty area from the highest address to the lowest.
 * AKA "Topdown" version,
 */
int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
		       unsigned long max, unsigned long size);

static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
			    unsigned long addr)
{
	memset(mas, 0, sizeof(struct ma_state));
	mas->tree = tree;
	mas->index = mas->last = addr;
	mas->max = ULONG_MAX;
	mas->status = ma_start;
	mas->node = NULL;
}

static inline bool mas_is_active(struct ma_state *mas)
{
	return mas->status == ma_active;
}

static inline bool mas_is_err(struct ma_state *mas)
{
	return mas->status == ma_error;
}

/**
 * mas_reset() - Reset a Maple Tree operation state.
 * @mas: Maple Tree operation state.
 *
 * Resets the error or walk state of the @mas so future walks of the
 * array will start from the root.  Use this if you have dropped the
 * lock and want to reuse the ma_state.
 *
 * Context: Any context.
 */
static __always_inline void mas_reset(struct ma_state *mas)
{
	mas->status = ma_start;
	mas->node = NULL;
}

/**
 * mas_for_each() - Iterate over a range of the maple tree.
 * @__mas: Maple Tree operation state (maple_state)
 * @__entry: Entry retrieved from the tree
 * @__max: maximum index to retrieve from the tree
 *
 * When returned, mas->index and mas->last will hold the entire range for the
 * entry.
 *
 * Note: may return the zero entry.
 */
#define mas_for_each(__mas, __entry, __max) \
	while (((__entry) = mas_find((__mas), (__max))) != NULL)

#ifdef CONFIG_DEBUG_MAPLE_TREE
enum mt_dump_format {
	mt_dump_dec,
	mt_dump_hex,
};

extern atomic_t maple_tree_tests_run;
extern atomic_t maple_tree_tests_passed;

void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
void mas_dump(const struct ma_state *mas);
void mas_wr_dump(const struct ma_wr_state *wr_mas);
void mt_validate(struct maple_tree *mt);
void mt_cache_shrink(void);
#define MT_BUG_ON(__tree, __x) do {					\
	atomic_inc(&maple_tree_tests_run);				\
	if (__x) {							\
		pr_info("BUG at %s:%d (%u)\n",				\
		__func__, __LINE__, __x);				\
		mt_dump(__tree, mt_dump_hex);				\
		pr_info("Pass: %u Run:%u\n",				\
			atomic_read(&maple_tree_tests_passed),		\
			atomic_read(&maple_tree_tests_run));		\
		dump_stack();						\
	} else {							\
		atomic_inc(&maple_tree_tests_passed);			\
	}								\
} while (0)

#define MAS_BUG_ON(__mas, __x) do {					\
	atomic_inc(&maple_tree_tests_run);				\
	if (__x) {							\
		pr_info("BUG at %s:%d (%u)\n",				\
		__func__, __LINE__, __x);				\
		mas_dump(__mas);					\
		mt_dump((__mas)->tree, mt_dump_hex);			\
		pr_info("Pass: %u Run:%u\n",				\
			atomic_read(&maple_tree_tests_passed),		\
			atomic_read(&maple_tree_tests_run));		\
		dump_stack();						\
	} else {							\
		atomic_inc(&maple_tree_tests_passed);			\
	}								\
} while (0)

#define MAS_WR_BUG_ON(__wrmas, __x) do {				\
	atomic_inc(&maple_tree_tests_run);				\
	if (__x) {							\
		pr_info("BUG at %s:%d (%u)\n",				\
		__func__, __LINE__, __x);				\
		mas_wr_dump(__wrmas);					\
		mas_dump((__wrmas)->mas);				\
		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
		pr_info("Pass: %u Run:%u\n",				\
			atomic_read(&maple_tree_tests_passed),		\
			atomic_read(&maple_tree_tests_run));		\
		dump_stack();						\
	} else {							\
		atomic_inc(&maple_tree_tests_passed);			\
	}								\
} while (0)

#define MT_WARN_ON(__tree, __x)  ({					\
	int ret = !!(__x);						\
	atomic_inc(&maple_tree_tests_run);				\
	if (ret) {							\
		pr_info("WARN at %s:%d (%u)\n",				\
		__func__, __LINE__, __x);				\
		mt_dump(__tree, mt_dump_hex);				\
		pr_info("Pass: %u Run:%u\n",				\
			atomic_read(&maple_tree_tests_passed),		\
			atomic_read(&maple_tree_tests_run));		\
		dump_stack();						\
	} else {							\
		atomic_inc(&maple_tree_tests_passed);			\
	}								\
	unlikely(ret);							\
})

#define MAS_WARN_ON(__mas, __x) ({					\
	int ret = !!(__x);						\
	atomic_inc(&maple_tree_tests_run);				\
	if (ret) {							\
		pr_info("WARN at %s:%d (%u)\n",				\
		__func__, __LINE__, __x);				\
		mas_dump(__mas);					\
		mt_dump((__mas)->tree, mt_dump_hex);			\
		pr_info("Pass: %u Run:%u\n",				\
			atomic_read(&maple_tree_tests_passed),		\
			atomic_read(&maple_tree_tests_run));		\
		dump_stack();						\
	} else {							\
		atomic_inc(&maple_tree_tests_passed);			\
	}								\
	unlikely(ret);							\
})

#define MAS_WR_WARN_ON(__wrmas, __x) ({					\
	int ret = !!(__x);						\
	atomic_inc(&maple_tree_tests_run);				\
	if (ret) {							\
		pr_info("WARN at %s:%d (%u)\n",				\
		__func__, __LINE__, __x);				\
		mas_wr_dump(__wrmas);					\
		mas_dump((__wrmas)->mas);				\
		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
		pr_info("Pass: %u Run:%u\n",				\
			atomic_read(&maple_tree_tests_passed),		\
			atomic_read(&maple_tree_tests_run));		\
		dump_stack();						\
	} else {							\
		atomic_inc(&maple_tree_tests_passed);			\
	}								\
	unlikely(ret);							\
})
#else
#define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
#define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
#define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
#define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
#define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
#define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
#endif /* CONFIG_DEBUG_MAPLE_TREE */

/**
 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
 * current location.
 * @mas: Maple Tree operation state.
 * @start: New start of range in the Maple Tree.
 * @last: New end of range in the Maple Tree.
 *
 * set the internal maple state values to a sub-range.
 * Please use mas_set_range() if you do not know where you are in the tree.
 */
static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
		unsigned long last)
{
	/* Ensure the range starts within the current slot */
	MAS_WARN_ON(mas, mas_is_active(mas) &&
		   (mas->index > start || mas->last < start));
	mas->index = start;
	mas->last = last;
}

/**
 * mas_set_range() - Set up Maple Tree operation state for a different index.
 * @mas: Maple Tree operation state.
 * @start: New start of range in the Maple Tree.
 * @last: New end of range in the Maple Tree.
 *
 * Move the operation state to refer to a different range.  This will
 * have the effect of starting a walk from the top; see mas_next()
 * to move to an adjacent index.
 */
static inline
void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
{
	mas_reset(mas);
	__mas_set_range(mas, start, last);
}

/**
 * mas_set() - Set up Maple Tree operation state for a different index.
 * @mas: Maple Tree operation state.
 * @index: New index into the Maple Tree.
 *
 * Move the operation state to refer to a different index.  This will
 * have the effect of starting a walk from the top; see mas_next()
 * to move to an adjacent index.
 */
static inline void mas_set(struct ma_state *mas, unsigned long index)
{

	mas_set_range(mas, index, index);
}

static inline bool mt_external_lock(const struct maple_tree *mt)
{
	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
}

/**
 * mt_init_flags() - Initialise an empty maple tree with flags.
 * @mt: Maple Tree
 * @flags: maple tree flags.
 *
 * If you need to initialise a Maple Tree with special flags (eg, an
 * allocation tree), use this function.
 *
 * Context: Any context.
 */
static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
{
	mt->ma_flags = flags;
	if (!mt_external_lock(mt))
		spin_lock_init(&mt->ma_lock);
	rcu_assign_pointer(mt->ma_root, NULL);
}

/**
 * mt_init() - Initialise an empty maple tree.
 * @mt: Maple Tree
 *
 * An empty Maple Tree.
 *
 * Context: Any context.
 */
static inline void mt_init(struct maple_tree *mt)
{
	mt_init_flags(mt, 0);
}

static inline bool mt_in_rcu(struct maple_tree *mt)
{
#ifdef CONFIG_MAPLE_RCU_DISABLED
	return false;
#endif
	return mt->ma_flags & MT_FLAGS_USE_RCU;
}

/**
 * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
 * @mt: The Maple Tree
 */
static inline void mt_clear_in_rcu(struct maple_tree *mt)
{
	if (!mt_in_rcu(mt))
		return;

	if (mt_external_lock(mt)) {
		WARN_ON(!mt_lock_is_held(mt));
		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
	} else {
		mtree_lock(mt);
		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
		mtree_unlock(mt);
	}
}

/**
 * mt_set_in_rcu() - Switch the tree to RCU safe mode.
 * @mt: The Maple Tree
 */
static inline void mt_set_in_rcu(struct maple_tree *mt)
{
	if (mt_in_rcu(mt))
		return;

	if (mt_external_lock(mt)) {
		WARN_ON(!mt_lock_is_held(mt));
		mt->ma_flags |= MT_FLAGS_USE_RCU;
	} else {
		mtree_lock(mt);
		mt->ma_flags |= MT_FLAGS_USE_RCU;
		mtree_unlock(mt);
	}
}

static inline unsigned int mt_height(const struct maple_tree *mt)
{
	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
}

void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
void *mt_find_after(struct maple_tree *mt, unsigned long *index,
		    unsigned long max);
void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);

/**
 * mt_for_each - Iterate over each entry starting at index until max.
 * @__tree: The Maple Tree
 * @__entry: The current entry
 * @__index: The index to start the search from. Subsequently used as iterator.
 * @__max: The maximum limit for @index
 *
 * This iterator skips all entries, which resolve to a NULL pointer,
 * e.g. entries which has been reserved with XA_ZERO_ENTRY.
 */
#define mt_for_each(__tree, __entry, __index, __max) \
	for (__entry = mt_find(__tree, &(__index), __max); \
		__entry; __entry = mt_find_after(__tree, &(__index), __max))

#endif /*_LINUX_MAPLE_TREE_H */
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!