Current File : //proc/thread-self/root/usr/src/linux-headers-6.8.0-59/include/linux/ftrace.h
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Ftrace header.  For implementation details beyond the random comments
 * scattered below, see: Documentation/trace/ftrace-design.rst
 */

#ifndef _LINUX_FTRACE_H
#define _LINUX_FTRACE_H

#include <linux/trace_recursion.h>
#include <linux/trace_clock.h>
#include <linux/jump_label.h>
#include <linux/kallsyms.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/ptrace.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/fs.h>

#include <asm/ftrace.h>

/*
 * If the arch supports passing the variable contents of
 * function_trace_op as the third parameter back from the
 * mcount call, then the arch should define this as 1.
 */
#ifndef ARCH_SUPPORTS_FTRACE_OPS
#define ARCH_SUPPORTS_FTRACE_OPS 0
#endif

#ifdef CONFIG_TRACING
extern void ftrace_boot_snapshot(void);
#else
static inline void ftrace_boot_snapshot(void) { }
#endif

struct ftrace_ops;
struct ftrace_regs;
struct dyn_ftrace;

char *arch_ftrace_match_adjust(char *str, const char *search);

#ifdef CONFIG_HAVE_FUNCTION_GRAPH_RETVAL
struct fgraph_ret_regs;
unsigned long ftrace_return_to_handler(struct fgraph_ret_regs *ret_regs);
#else
unsigned long ftrace_return_to_handler(unsigned long frame_pointer);
#endif

#ifdef CONFIG_FUNCTION_TRACER
/*
 * If the arch's mcount caller does not support all of ftrace's
 * features, then it must call an indirect function that
 * does. Or at least does enough to prevent any unwelcome side effects.
 *
 * Also define the function prototype that these architectures use
 * to call the ftrace_ops_list_func().
 */
#if !ARCH_SUPPORTS_FTRACE_OPS
# define FTRACE_FORCE_LIST_FUNC 1
void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip);
#else
# define FTRACE_FORCE_LIST_FUNC 0
void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
			       struct ftrace_ops *op, struct ftrace_regs *fregs);
#endif
extern const struct ftrace_ops ftrace_nop_ops;
extern const struct ftrace_ops ftrace_list_ops;
struct ftrace_ops *ftrace_find_unique_ops(struct dyn_ftrace *rec);
#endif /* CONFIG_FUNCTION_TRACER */

/* Main tracing buffer and events set up */
#ifdef CONFIG_TRACING
void trace_init(void);
void early_trace_init(void);
#else
static inline void trace_init(void) { }
static inline void early_trace_init(void) { }
#endif

struct module;
struct ftrace_hash;
struct ftrace_direct_func;

#if defined(CONFIG_FUNCTION_TRACER) && defined(CONFIG_MODULES) && \
	defined(CONFIG_DYNAMIC_FTRACE)
int
ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
		   unsigned long *off, char **modname, char *sym);
#else
static inline int
ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
		   unsigned long *off, char **modname, char *sym)
{
	return 0;
}
#endif

#if defined(CONFIG_FUNCTION_TRACER) && defined(CONFIG_DYNAMIC_FTRACE)
int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
			   char *type, char *name,
			   char *module_name, int *exported);
#else
static inline int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
					 char *type, char *name,
					 char *module_name, int *exported)
{
	return -1;
}
#endif

#ifdef CONFIG_FUNCTION_TRACER

extern int ftrace_enabled;

#ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS

struct ftrace_regs {
	struct pt_regs		regs;
};
#define arch_ftrace_get_regs(fregs) (&(fregs)->regs)

/*
 * ftrace_regs_set_instruction_pointer() is to be defined by the architecture
 * if to allow setting of the instruction pointer from the ftrace_regs when
 * HAVE_DYNAMIC_FTRACE_WITH_ARGS is set and it supports live kernel patching.
 */
#define ftrace_regs_set_instruction_pointer(fregs, ip) do { } while (0)
#endif /* CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS */

static __always_inline struct pt_regs *ftrace_get_regs(struct ftrace_regs *fregs)
{
	if (!fregs)
		return NULL;

	return arch_ftrace_get_regs(fregs);
}

/*
 * When true, the ftrace_regs_{get,set}_*() functions may be used on fregs.
 * Note: this can be true even when ftrace_get_regs() cannot provide a pt_regs.
 */
static __always_inline bool ftrace_regs_has_args(struct ftrace_regs *fregs)
{
	if (IS_ENABLED(CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS))
		return true;

	return ftrace_get_regs(fregs) != NULL;
}

#ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS
#define ftrace_regs_get_instruction_pointer(fregs) \
	instruction_pointer(ftrace_get_regs(fregs))
#define ftrace_regs_get_argument(fregs, n) \
	regs_get_kernel_argument(ftrace_get_regs(fregs), n)
#define ftrace_regs_get_stack_pointer(fregs) \
	kernel_stack_pointer(ftrace_get_regs(fregs))
#define ftrace_regs_return_value(fregs) \
	regs_return_value(ftrace_get_regs(fregs))
#define ftrace_regs_set_return_value(fregs, ret) \
	regs_set_return_value(ftrace_get_regs(fregs), ret)
#define ftrace_override_function_with_return(fregs) \
	override_function_with_return(ftrace_get_regs(fregs))
#define ftrace_regs_query_register_offset(name) \
	regs_query_register_offset(name)
#endif

typedef void (*ftrace_func_t)(unsigned long ip, unsigned long parent_ip,
			      struct ftrace_ops *op, struct ftrace_regs *fregs);

ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops);

/*
 * FTRACE_OPS_FL_* bits denote the state of ftrace_ops struct and are
 * set in the flags member.
 * CONTROL, SAVE_REGS, SAVE_REGS_IF_SUPPORTED, RECURSION, STUB and
 * IPMODIFY are a kind of attribute flags which can be set only before
 * registering the ftrace_ops, and can not be modified while registered.
 * Changing those attribute flags after registering ftrace_ops will
 * cause unexpected results.
 *
 * ENABLED - set/unset when ftrace_ops is registered/unregistered
 * DYNAMIC - set when ftrace_ops is registered to denote dynamically
 *           allocated ftrace_ops which need special care
 * SAVE_REGS - The ftrace_ops wants regs saved at each function called
 *            and passed to the callback. If this flag is set, but the
 *            architecture does not support passing regs
 *            (CONFIG_DYNAMIC_FTRACE_WITH_REGS is not defined), then the
 *            ftrace_ops will fail to register, unless the next flag
 *            is set.
 * SAVE_REGS_IF_SUPPORTED - This is the same as SAVE_REGS, but if the
 *            handler can handle an arch that does not save regs
 *            (the handler tests if regs == NULL), then it can set
 *            this flag instead. It will not fail registering the ftrace_ops
 *            but, the regs field will be NULL if the arch does not support
 *            passing regs to the handler.
 *            Note, if this flag is set, the SAVE_REGS flag will automatically
 *            get set upon registering the ftrace_ops, if the arch supports it.
 * RECURSION - The ftrace_ops can set this to tell the ftrace infrastructure
 *            that the call back needs recursion protection. If it does
 *            not set this, then the ftrace infrastructure will assume
 *            that the callback can handle recursion on its own.
 * STUB   - The ftrace_ops is just a place holder.
 * INITIALIZED - The ftrace_ops has already been initialized (first use time
 *            register_ftrace_function() is called, it will initialized the ops)
 * DELETED - The ops are being deleted, do not let them be registered again.
 * ADDING  - The ops is in the process of being added.
 * REMOVING - The ops is in the process of being removed.
 * MODIFYING - The ops is in the process of changing its filter functions.
 * ALLOC_TRAMP - A dynamic trampoline was allocated by the core code.
 *            The arch specific code sets this flag when it allocated a
 *            trampoline. This lets the arch know that it can update the
 *            trampoline in case the callback function changes.
 *            The ftrace_ops trampoline can be set by the ftrace users, and
 *            in such cases the arch must not modify it. Only the arch ftrace
 *            core code should set this flag.
 * IPMODIFY - The ops can modify the IP register. This can only be set with
 *            SAVE_REGS. If another ops with this flag set is already registered
 *            for any of the functions that this ops will be registered for, then
 *            this ops will fail to register or set_filter_ip.
 * PID     - Is affected by set_ftrace_pid (allows filtering on those pids)
 * RCU     - Set when the ops can only be called when RCU is watching.
 * TRACE_ARRAY - The ops->private points to a trace_array descriptor.
 * PERMANENT - Set when the ops is permanent and should not be affected by
 *             ftrace_enabled.
 * DIRECT - Used by the direct ftrace_ops helper for direct functions
 *            (internal ftrace only, should not be used by others)
 */
enum {
	FTRACE_OPS_FL_ENABLED			= BIT(0),
	FTRACE_OPS_FL_DYNAMIC			= BIT(1),
	FTRACE_OPS_FL_SAVE_REGS			= BIT(2),
	FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED	= BIT(3),
	FTRACE_OPS_FL_RECURSION			= BIT(4),
	FTRACE_OPS_FL_STUB			= BIT(5),
	FTRACE_OPS_FL_INITIALIZED		= BIT(6),
	FTRACE_OPS_FL_DELETED			= BIT(7),
	FTRACE_OPS_FL_ADDING			= BIT(8),
	FTRACE_OPS_FL_REMOVING			= BIT(9),
	FTRACE_OPS_FL_MODIFYING			= BIT(10),
	FTRACE_OPS_FL_ALLOC_TRAMP		= BIT(11),
	FTRACE_OPS_FL_IPMODIFY			= BIT(12),
	FTRACE_OPS_FL_PID			= BIT(13),
	FTRACE_OPS_FL_RCU			= BIT(14),
	FTRACE_OPS_FL_TRACE_ARRAY		= BIT(15),
	FTRACE_OPS_FL_PERMANENT                 = BIT(16),
	FTRACE_OPS_FL_DIRECT			= BIT(17),
};

#ifndef CONFIG_DYNAMIC_FTRACE_WITH_ARGS
#define FTRACE_OPS_FL_SAVE_ARGS                        FTRACE_OPS_FL_SAVE_REGS
#else
#define FTRACE_OPS_FL_SAVE_ARGS                        0
#endif

/*
 * FTRACE_OPS_CMD_* commands allow the ftrace core logic to request changes
 * to a ftrace_ops. Note, the requests may fail.
 *
 * ENABLE_SHARE_IPMODIFY_SELF - enable a DIRECT ops to work on the same
 *                              function as an ops with IPMODIFY. Called
 *                              when the DIRECT ops is being registered.
 *                              This is called with both direct_mutex and
 *                              ftrace_lock are locked.
 *
 * ENABLE_SHARE_IPMODIFY_PEER - enable a DIRECT ops to work on the same
 *                              function as an ops with IPMODIFY. Called
 *                              when the other ops (the one with IPMODIFY)
 *                              is being registered.
 *                              This is called with direct_mutex locked.
 *
 * DISABLE_SHARE_IPMODIFY_PEER - disable a DIRECT ops to work on the same
 *                               function as an ops with IPMODIFY. Called
 *                               when the other ops (the one with IPMODIFY)
 *                               is being unregistered.
 *                               This is called with direct_mutex locked.
 */
enum ftrace_ops_cmd {
	FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF,
	FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER,
	FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER,
};

/*
 * For most ftrace_ops_cmd,
 * Returns:
 *        0 - Success.
 *        Negative on failure. The return value is dependent on the
 *        callback.
 */
typedef int (*ftrace_ops_func_t)(struct ftrace_ops *op, enum ftrace_ops_cmd cmd);

#ifdef CONFIG_DYNAMIC_FTRACE
/* The hash used to know what functions callbacks trace */
struct ftrace_ops_hash {
	struct ftrace_hash __rcu	*notrace_hash;
	struct ftrace_hash __rcu	*filter_hash;
	struct mutex			regex_lock;
};

void ftrace_free_init_mem(void);
void ftrace_free_mem(struct module *mod, void *start, void *end);
#else
static inline void ftrace_free_init_mem(void)
{
	ftrace_boot_snapshot();
}
static inline void ftrace_free_mem(struct module *mod, void *start, void *end) { }
#endif

/*
 * Note, ftrace_ops can be referenced outside of RCU protection, unless
 * the RCU flag is set. If ftrace_ops is allocated and not part of kernel
 * core data, the unregistering of it will perform a scheduling on all CPUs
 * to make sure that there are no more users. Depending on the load of the
 * system that may take a bit of time.
 *
 * Any private data added must also take care not to be freed and if private
 * data is added to a ftrace_ops that is in core code, the user of the
 * ftrace_ops must perform a schedule_on_each_cpu() before freeing it.
 */
struct ftrace_ops {
	ftrace_func_t			func;
	struct ftrace_ops __rcu		*next;
	unsigned long			flags;
	void				*private;
	ftrace_func_t			saved_func;
#ifdef CONFIG_DYNAMIC_FTRACE
	struct ftrace_ops_hash		local_hash;
	struct ftrace_ops_hash		*func_hash;
	struct ftrace_ops_hash		old_hash;
	unsigned long			trampoline;
	unsigned long			trampoline_size;
	struct list_head		list;
	ftrace_ops_func_t		ops_func;
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
	unsigned long			direct_call;
#endif
#endif
};

extern struct ftrace_ops __rcu *ftrace_ops_list;
extern struct ftrace_ops ftrace_list_end;

/*
 * Traverse the ftrace_ops_list, invoking all entries.  The reason that we
 * can use rcu_dereference_raw_check() is that elements removed from this list
 * are simply leaked, so there is no need to interact with a grace-period
 * mechanism.  The rcu_dereference_raw_check() calls are needed to handle
 * concurrent insertions into the ftrace_ops_list.
 *
 * Silly Alpha and silly pointer-speculation compiler optimizations!
 */
#define do_for_each_ftrace_op(op, list)			\
	op = rcu_dereference_raw_check(list);			\
	do

/*
 * Optimized for just a single item in the list (as that is the normal case).
 */
#define while_for_each_ftrace_op(op)				\
	while (likely(op = rcu_dereference_raw_check((op)->next)) &&	\
	       unlikely((op) != &ftrace_list_end))

/*
 * Type of the current tracing.
 */
enum ftrace_tracing_type_t {
	FTRACE_TYPE_ENTER = 0, /* Hook the call of the function */
	FTRACE_TYPE_RETURN,	/* Hook the return of the function */
};

/* Current tracing type, default is FTRACE_TYPE_ENTER */
extern enum ftrace_tracing_type_t ftrace_tracing_type;

/*
 * The ftrace_ops must be a static and should also
 * be read_mostly.  These functions do modify read_mostly variables
 * so use them sparely. Never free an ftrace_op or modify the
 * next pointer after it has been registered. Even after unregistering
 * it, the next pointer may still be used internally.
 */
int register_ftrace_function(struct ftrace_ops *ops);
int unregister_ftrace_function(struct ftrace_ops *ops);

extern void ftrace_stub(unsigned long a0, unsigned long a1,
			struct ftrace_ops *op, struct ftrace_regs *fregs);


int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs);
#else /* !CONFIG_FUNCTION_TRACER */
/*
 * (un)register_ftrace_function must be a macro since the ops parameter
 * must not be evaluated.
 */
#define register_ftrace_function(ops) ({ 0; })
#define unregister_ftrace_function(ops) ({ 0; })
static inline void ftrace_kill(void) { }
static inline void ftrace_free_init_mem(void) { }
static inline void ftrace_free_mem(struct module *mod, void *start, void *end) { }
static inline int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
{
	return -EOPNOTSUPP;
}
#endif /* CONFIG_FUNCTION_TRACER */

struct ftrace_func_entry {
	struct hlist_node hlist;
	unsigned long ip;
	unsigned long direct; /* for direct lookup only */
};

#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
extern int ftrace_direct_func_count;
unsigned long ftrace_find_rec_direct(unsigned long ip);
int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr);
int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr,
			     bool free_filters);
int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr);
int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr);

void ftrace_stub_direct_tramp(void);

#else
struct ftrace_ops;
# define ftrace_direct_func_count 0
static inline unsigned long ftrace_find_rec_direct(unsigned long ip)
{
	return 0;
}
static inline int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
{
	return -ENODEV;
}
static inline int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr,
					   bool free_filters)
{
	return -ENODEV;
}
static inline int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
{
	return -ENODEV;
}
static inline int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr)
{
	return -ENODEV;
}

/*
 * This must be implemented by the architecture.
 * It is the way the ftrace direct_ops helper, when called
 * via ftrace (because there's other callbacks besides the
 * direct call), can inform the architecture's trampoline that this
 * routine has a direct caller, and what the caller is.
 *
 * For example, in x86, it returns the direct caller
 * callback function via the regs->orig_ax parameter.
 * Then in the ftrace trampoline, if this is set, it makes
 * the return from the trampoline jump to the direct caller
 * instead of going back to the function it just traced.
 */
static inline void arch_ftrace_set_direct_caller(struct ftrace_regs *fregs,
						 unsigned long addr) { }
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */

#ifdef CONFIG_STACK_TRACER

extern int stack_tracer_enabled;

int stack_trace_sysctl(struct ctl_table *table, int write, void *buffer,
		       size_t *lenp, loff_t *ppos);

/* DO NOT MODIFY THIS VARIABLE DIRECTLY! */
DECLARE_PER_CPU(int, disable_stack_tracer);

/**
 * stack_tracer_disable - temporarily disable the stack tracer
 *
 * There's a few locations (namely in RCU) where stack tracing
 * cannot be executed. This function is used to disable stack
 * tracing during those critical sections.
 *
 * This function must be called with preemption or interrupts
 * disabled and stack_tracer_enable() must be called shortly after
 * while preemption or interrupts are still disabled.
 */
static inline void stack_tracer_disable(void)
{
	/* Preemption or interrupts must be disabled */
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT))
		WARN_ON_ONCE(!preempt_count() || !irqs_disabled());
	this_cpu_inc(disable_stack_tracer);
}

/**
 * stack_tracer_enable - re-enable the stack tracer
 *
 * After stack_tracer_disable() is called, stack_tracer_enable()
 * must be called shortly afterward.
 */
static inline void stack_tracer_enable(void)
{
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT))
		WARN_ON_ONCE(!preempt_count() || !irqs_disabled());
	this_cpu_dec(disable_stack_tracer);
}
#else
static inline void stack_tracer_disable(void) { }
static inline void stack_tracer_enable(void) { }
#endif

#ifdef CONFIG_DYNAMIC_FTRACE

void ftrace_arch_code_modify_prepare(void);
void ftrace_arch_code_modify_post_process(void);

enum ftrace_bug_type {
	FTRACE_BUG_UNKNOWN,
	FTRACE_BUG_INIT,
	FTRACE_BUG_NOP,
	FTRACE_BUG_CALL,
	FTRACE_BUG_UPDATE,
};
extern enum ftrace_bug_type ftrace_bug_type;

/*
 * Archs can set this to point to a variable that holds the value that was
 * expected at the call site before calling ftrace_bug().
 */
extern const void *ftrace_expected;

void ftrace_bug(int err, struct dyn_ftrace *rec);

struct seq_file;

extern int ftrace_text_reserved(const void *start, const void *end);

struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr);

bool is_ftrace_trampoline(unsigned long addr);

/*
 * The dyn_ftrace record's flags field is split into two parts.
 * the first part which is '0-FTRACE_REF_MAX' is a counter of
 * the number of callbacks that have registered the function that
 * the dyn_ftrace descriptor represents.
 *
 * The second part is a mask:
 *  ENABLED - the function is being traced
 *  REGS    - the record wants the function to save regs
 *  REGS_EN - the function is set up to save regs.
 *  IPMODIFY - the record allows for the IP address to be changed.
 *  DISABLED - the record is not ready to be touched yet
 *  DIRECT   - there is a direct function to call
 *  CALL_OPS - the record can use callsite-specific ops
 *  CALL_OPS_EN - the function is set up to use callsite-specific ops
 *  TOUCHED  - A callback was added since boot up
 *  MODIFIED - The function had IPMODIFY or DIRECT attached to it
 *
 * When a new ftrace_ops is registered and wants a function to save
 * pt_regs, the rec->flags REGS is set. When the function has been
 * set up to save regs, the REG_EN flag is set. Once a function
 * starts saving regs it will do so until all ftrace_ops are removed
 * from tracing that function.
 */
enum {
	FTRACE_FL_ENABLED	= (1UL << 31),
	FTRACE_FL_REGS		= (1UL << 30),
	FTRACE_FL_REGS_EN	= (1UL << 29),
	FTRACE_FL_TRAMP		= (1UL << 28),
	FTRACE_FL_TRAMP_EN	= (1UL << 27),
	FTRACE_FL_IPMODIFY	= (1UL << 26),
	FTRACE_FL_DISABLED	= (1UL << 25),
	FTRACE_FL_DIRECT	= (1UL << 24),
	FTRACE_FL_DIRECT_EN	= (1UL << 23),
	FTRACE_FL_CALL_OPS	= (1UL << 22),
	FTRACE_FL_CALL_OPS_EN	= (1UL << 21),
	FTRACE_FL_TOUCHED	= (1UL << 20),
	FTRACE_FL_MODIFIED	= (1UL << 19),
};

#define FTRACE_REF_MAX_SHIFT	19
#define FTRACE_REF_MAX		((1UL << FTRACE_REF_MAX_SHIFT) - 1)

#define ftrace_rec_count(rec)	((rec)->flags & FTRACE_REF_MAX)

struct dyn_ftrace {
	unsigned long		ip; /* address of mcount call-site */
	unsigned long		flags;
	struct dyn_arch_ftrace	arch;
};

int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
			 int remove, int reset);
int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
			  unsigned int cnt, int remove, int reset);
int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
		       int len, int reset);
int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
			int len, int reset);
void ftrace_set_global_filter(unsigned char *buf, int len, int reset);
void ftrace_set_global_notrace(unsigned char *buf, int len, int reset);
void ftrace_free_filter(struct ftrace_ops *ops);
void ftrace_ops_set_global_filter(struct ftrace_ops *ops);

enum {
	FTRACE_UPDATE_CALLS		= (1 << 0),
	FTRACE_DISABLE_CALLS		= (1 << 1),
	FTRACE_UPDATE_TRACE_FUNC	= (1 << 2),
	FTRACE_START_FUNC_RET		= (1 << 3),
	FTRACE_STOP_FUNC_RET		= (1 << 4),
	FTRACE_MAY_SLEEP		= (1 << 5),
};

/*
 * The FTRACE_UPDATE_* enum is used to pass information back
 * from the ftrace_update_record() and ftrace_test_record()
 * functions. These are called by the code update routines
 * to find out what is to be done for a given function.
 *
 *  IGNORE           - The function is already what we want it to be
 *  MAKE_CALL        - Start tracing the function
 *  MODIFY_CALL      - Stop saving regs for the function
 *  MAKE_NOP         - Stop tracing the function
 */
enum {
	FTRACE_UPDATE_IGNORE,
	FTRACE_UPDATE_MAKE_CALL,
	FTRACE_UPDATE_MODIFY_CALL,
	FTRACE_UPDATE_MAKE_NOP,
};

enum {
	FTRACE_ITER_FILTER	= (1 << 0),
	FTRACE_ITER_NOTRACE	= (1 << 1),
	FTRACE_ITER_PRINTALL	= (1 << 2),
	FTRACE_ITER_DO_PROBES	= (1 << 3),
	FTRACE_ITER_PROBE	= (1 << 4),
	FTRACE_ITER_MOD		= (1 << 5),
	FTRACE_ITER_ENABLED	= (1 << 6),
	FTRACE_ITER_TOUCHED	= (1 << 7),
	FTRACE_ITER_ADDRS	= (1 << 8),
};

void arch_ftrace_update_code(int command);
void arch_ftrace_update_trampoline(struct ftrace_ops *ops);
void *arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec);
void arch_ftrace_trampoline_free(struct ftrace_ops *ops);

struct ftrace_rec_iter;

struct ftrace_rec_iter *ftrace_rec_iter_start(void);
struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter);
struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter);

#define for_ftrace_rec_iter(iter)		\
	for (iter = ftrace_rec_iter_start();	\
	     iter;				\
	     iter = ftrace_rec_iter_next(iter))


int ftrace_update_record(struct dyn_ftrace *rec, bool enable);
int ftrace_test_record(struct dyn_ftrace *rec, bool enable);
void ftrace_run_stop_machine(int command);
unsigned long ftrace_location(unsigned long ip);
unsigned long ftrace_location_range(unsigned long start, unsigned long end);
unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec);
unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec);

extern ftrace_func_t ftrace_trace_function;

int ftrace_regex_open(struct ftrace_ops *ops, int flag,
		  struct inode *inode, struct file *file);
ssize_t ftrace_filter_write(struct file *file, const char __user *ubuf,
			    size_t cnt, loff_t *ppos);
ssize_t ftrace_notrace_write(struct file *file, const char __user *ubuf,
			     size_t cnt, loff_t *ppos);
int ftrace_regex_release(struct inode *inode, struct file *file);

void __init
ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable);

/* defined in arch */
extern int ftrace_dyn_arch_init(void);
extern void ftrace_replace_code(int enable);
extern int ftrace_update_ftrace_func(ftrace_func_t func);
extern void ftrace_caller(void);
extern void ftrace_regs_caller(void);
extern void ftrace_call(void);
extern void ftrace_regs_call(void);
extern void mcount_call(void);

void ftrace_modify_all_code(int command);

#ifndef FTRACE_ADDR
#define FTRACE_ADDR ((unsigned long)ftrace_caller)
#endif

#ifndef FTRACE_GRAPH_ADDR
#define FTRACE_GRAPH_ADDR ((unsigned long)ftrace_graph_caller)
#endif

#ifndef FTRACE_REGS_ADDR
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
# define FTRACE_REGS_ADDR ((unsigned long)ftrace_regs_caller)
#else
# define FTRACE_REGS_ADDR FTRACE_ADDR
#endif
#endif

/*
 * If an arch would like functions that are only traced
 * by the function graph tracer to jump directly to its own
 * trampoline, then they can define FTRACE_GRAPH_TRAMP_ADDR
 * to be that address to jump to.
 */
#ifndef FTRACE_GRAPH_TRAMP_ADDR
#define FTRACE_GRAPH_TRAMP_ADDR ((unsigned long) 0)
#endif

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
extern void ftrace_graph_caller(void);
extern int ftrace_enable_ftrace_graph_caller(void);
extern int ftrace_disable_ftrace_graph_caller(void);
#else
static inline int ftrace_enable_ftrace_graph_caller(void) { return 0; }
static inline int ftrace_disable_ftrace_graph_caller(void) { return 0; }
#endif

/**
 * ftrace_make_nop - convert code into nop
 * @mod: module structure if called by module load initialization
 * @rec: the call site record (e.g. mcount/fentry)
 * @addr: the address that the call site should be calling
 *
 * This is a very sensitive operation and great care needs
 * to be taken by the arch.  The operation should carefully
 * read the location, check to see if what is read is indeed
 * what we expect it to be, and then on success of the compare,
 * it should write to the location.
 *
 * The code segment at @rec->ip should be a caller to @addr
 *
 * Return must be:
 *  0 on success
 *  -EFAULT on error reading the location
 *  -EINVAL on a failed compare of the contents
 *  -EPERM  on error writing to the location
 * Any other value will be considered a failure.
 */
extern int ftrace_make_nop(struct module *mod,
			   struct dyn_ftrace *rec, unsigned long addr);

/**
 * ftrace_need_init_nop - return whether nop call sites should be initialized
 *
 * Normally the compiler's -mnop-mcount generates suitable nops, so we don't
 * need to call ftrace_init_nop() if the code is built with that flag.
 * Architectures where this is not always the case may define their own
 * condition.
 *
 * Return must be:
 *  0	    if ftrace_init_nop() should be called
 *  Nonzero if ftrace_init_nop() should not be called
 */

#ifndef ftrace_need_init_nop
#define ftrace_need_init_nop() (!__is_defined(CC_USING_NOP_MCOUNT))
#endif

/**
 * ftrace_init_nop - initialize a nop call site
 * @mod: module structure if called by module load initialization
 * @rec: the call site record (e.g. mcount/fentry)
 *
 * This is a very sensitive operation and great care needs
 * to be taken by the arch.  The operation should carefully
 * read the location, check to see if what is read is indeed
 * what we expect it to be, and then on success of the compare,
 * it should write to the location.
 *
 * The code segment at @rec->ip should contain the contents created by
 * the compiler
 *
 * Return must be:
 *  0 on success
 *  -EFAULT on error reading the location
 *  -EINVAL on a failed compare of the contents
 *  -EPERM  on error writing to the location
 * Any other value will be considered a failure.
 */
#ifndef ftrace_init_nop
static inline int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec)
{
	return ftrace_make_nop(mod, rec, MCOUNT_ADDR);
}
#endif

/**
 * ftrace_make_call - convert a nop call site into a call to addr
 * @rec: the call site record (e.g. mcount/fentry)
 * @addr: the address that the call site should call
 *
 * This is a very sensitive operation and great care needs
 * to be taken by the arch.  The operation should carefully
 * read the location, check to see if what is read is indeed
 * what we expect it to be, and then on success of the compare,
 * it should write to the location.
 *
 * The code segment at @rec->ip should be a nop
 *
 * Return must be:
 *  0 on success
 *  -EFAULT on error reading the location
 *  -EINVAL on a failed compare of the contents
 *  -EPERM  on error writing to the location
 * Any other value will be considered a failure.
 */
extern int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr);

#if defined(CONFIG_DYNAMIC_FTRACE_WITH_REGS) || \
	defined(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS)
/**
 * ftrace_modify_call - convert from one addr to another (no nop)
 * @rec: the call site record (e.g. mcount/fentry)
 * @old_addr: the address expected to be currently called to
 * @addr: the address to change to
 *
 * This is a very sensitive operation and great care needs
 * to be taken by the arch.  The operation should carefully
 * read the location, check to see if what is read is indeed
 * what we expect it to be, and then on success of the compare,
 * it should write to the location.
 *
 * When using call ops, this is called when the associated ops change, even
 * when (addr == old_addr).
 *
 * The code segment at @rec->ip should be a caller to @old_addr
 *
 * Return must be:
 *  0 on success
 *  -EFAULT on error reading the location
 *  -EINVAL on a failed compare of the contents
 *  -EPERM  on error writing to the location
 * Any other value will be considered a failure.
 */
extern int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
			      unsigned long addr);
#else
/* Should never be called */
static inline int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
				     unsigned long addr)
{
	return -EINVAL;
}
#endif

extern int skip_trace(unsigned long ip);
extern void ftrace_module_init(struct module *mod);
extern void ftrace_module_enable(struct module *mod);
extern void ftrace_release_mod(struct module *mod);
#else /* CONFIG_DYNAMIC_FTRACE */
static inline int skip_trace(unsigned long ip) { return 0; }
static inline void ftrace_module_init(struct module *mod) { }
static inline void ftrace_module_enable(struct module *mod) { }
static inline void ftrace_release_mod(struct module *mod) { }
static inline int ftrace_text_reserved(const void *start, const void *end)
{
	return 0;
}
static inline unsigned long ftrace_location(unsigned long ip)
{
	return 0;
}

/*
 * Again users of functions that have ftrace_ops may not
 * have them defined when ftrace is not enabled, but these
 * functions may still be called. Use a macro instead of inline.
 */
#define ftrace_regex_open(ops, flag, inod, file) ({ -ENODEV; })
#define ftrace_set_early_filter(ops, buf, enable) do { } while (0)
#define ftrace_set_filter_ip(ops, ip, remove, reset) ({ -ENODEV; })
#define ftrace_set_filter_ips(ops, ips, cnt, remove, reset) ({ -ENODEV; })
#define ftrace_set_filter(ops, buf, len, reset) ({ -ENODEV; })
#define ftrace_set_notrace(ops, buf, len, reset) ({ -ENODEV; })
#define ftrace_free_filter(ops) do { } while (0)
#define ftrace_ops_set_global_filter(ops) do { } while (0)

static inline ssize_t ftrace_filter_write(struct file *file, const char __user *ubuf,
			    size_t cnt, loff_t *ppos) { return -ENODEV; }
static inline ssize_t ftrace_notrace_write(struct file *file, const char __user *ubuf,
			     size_t cnt, loff_t *ppos) { return -ENODEV; }
static inline int
ftrace_regex_release(struct inode *inode, struct file *file) { return -ENODEV; }

static inline bool is_ftrace_trampoline(unsigned long addr)
{
	return false;
}
#endif /* CONFIG_DYNAMIC_FTRACE */

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#ifndef ftrace_graph_func
#define ftrace_graph_func ftrace_stub
#define FTRACE_OPS_GRAPH_STUB FTRACE_OPS_FL_STUB
#else
#define FTRACE_OPS_GRAPH_STUB 0
#endif
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */

/* totally disable ftrace - can not re-enable after this */
void ftrace_kill(void);

static inline void tracer_disable(void)
{
#ifdef CONFIG_FUNCTION_TRACER
	ftrace_enabled = 0;
#endif
}

/*
 * Ftrace disable/restore without lock. Some synchronization mechanism
 * must be used to prevent ftrace_enabled to be changed between
 * disable/restore.
 */
static inline int __ftrace_enabled_save(void)
{
#ifdef CONFIG_FUNCTION_TRACER
	int saved_ftrace_enabled = ftrace_enabled;
	ftrace_enabled = 0;
	return saved_ftrace_enabled;
#else
	return 0;
#endif
}

static inline void __ftrace_enabled_restore(int enabled)
{
#ifdef CONFIG_FUNCTION_TRACER
	ftrace_enabled = enabled;
#endif
}

/* All archs should have this, but we define it for consistency */
#ifndef ftrace_return_address0
# define ftrace_return_address0 __builtin_return_address(0)
#endif

/* Archs may use other ways for ADDR1 and beyond */
#ifndef ftrace_return_address
# ifdef CONFIG_FRAME_POINTER
#  define ftrace_return_address(n) __builtin_return_address(n)
# else
#  define ftrace_return_address(n) 0UL
# endif
#endif

#define CALLER_ADDR0 ((unsigned long)ftrace_return_address0)
#define CALLER_ADDR1 ((unsigned long)ftrace_return_address(1))
#define CALLER_ADDR2 ((unsigned long)ftrace_return_address(2))
#define CALLER_ADDR3 ((unsigned long)ftrace_return_address(3))
#define CALLER_ADDR4 ((unsigned long)ftrace_return_address(4))
#define CALLER_ADDR5 ((unsigned long)ftrace_return_address(5))
#define CALLER_ADDR6 ((unsigned long)ftrace_return_address(6))

static __always_inline unsigned long get_lock_parent_ip(void)
{
	unsigned long addr = CALLER_ADDR0;

	if (!in_lock_functions(addr))
		return addr;
	addr = CALLER_ADDR1;
	if (!in_lock_functions(addr))
		return addr;
	return CALLER_ADDR2;
}

#ifdef CONFIG_TRACE_PREEMPT_TOGGLE
  extern void trace_preempt_on(unsigned long a0, unsigned long a1);
  extern void trace_preempt_off(unsigned long a0, unsigned long a1);
#else
/*
 * Use defines instead of static inlines because some arches will make code out
 * of the CALLER_ADDR, when we really want these to be a real nop.
 */
# define trace_preempt_on(a0, a1) do { } while (0)
# define trace_preempt_off(a0, a1) do { } while (0)
#endif

#ifdef CONFIG_FTRACE_MCOUNT_RECORD
extern void ftrace_init(void);
#ifdef CC_USING_PATCHABLE_FUNCTION_ENTRY
#define FTRACE_CALLSITE_SECTION	"__patchable_function_entries"
#else
#define FTRACE_CALLSITE_SECTION	"__mcount_loc"
#endif
#else
static inline void ftrace_init(void) { }
#endif

/*
 * Structure that defines an entry function trace.
 * It's already packed but the attribute "packed" is needed
 * to remove extra padding at the end.
 */
struct ftrace_graph_ent {
	unsigned long func; /* Current function */
	int depth;
} __packed;

/*
 * Structure that defines a return function trace.
 * It's already packed but the attribute "packed" is needed
 * to remove extra padding at the end.
 */
struct ftrace_graph_ret {
	unsigned long func; /* Current function */
#ifdef CONFIG_FUNCTION_GRAPH_RETVAL
	unsigned long retval;
#endif
	int depth;
	/* Number of functions that overran the depth limit for current task */
	unsigned int overrun;
	unsigned long long calltime;
	unsigned long long rettime;
} __packed;

/* Type of the callback handlers for tracing function graph*/
typedef void (*trace_func_graph_ret_t)(struct ftrace_graph_ret *); /* return */
typedef int (*trace_func_graph_ent_t)(struct ftrace_graph_ent *); /* entry */

extern int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace);

#ifdef CONFIG_FUNCTION_GRAPH_TRACER

struct fgraph_ops {
	trace_func_graph_ent_t		entryfunc;
	trace_func_graph_ret_t		retfunc;
};

/*
 * Stack of return addresses for functions
 * of a thread.
 * Used in struct thread_info
 */
struct ftrace_ret_stack {
	unsigned long ret;
	unsigned long func;
	unsigned long long calltime;
#ifdef CONFIG_FUNCTION_PROFILER
	unsigned long long subtime;
#endif
#ifdef HAVE_FUNCTION_GRAPH_FP_TEST
	unsigned long fp;
#endif
#ifdef HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
	unsigned long *retp;
#endif
};

/*
 * Primary handler of a function return.
 * It relays on ftrace_return_to_handler.
 * Defined in entry_32/64.S
 */
extern void return_to_handler(void);

extern int
function_graph_enter(unsigned long ret, unsigned long func,
		     unsigned long frame_pointer, unsigned long *retp);

struct ftrace_ret_stack *
ftrace_graph_get_ret_stack(struct task_struct *task, int idx);

unsigned long ftrace_graph_ret_addr(struct task_struct *task, int *idx,
				    unsigned long ret, unsigned long *retp);

/*
 * Sometimes we don't want to trace a function with the function
 * graph tracer but we want them to keep traced by the usual function
 * tracer if the function graph tracer is not configured.
 */
#define __notrace_funcgraph		notrace

#define FTRACE_RETFUNC_DEPTH 50
#define FTRACE_RETSTACK_ALLOC_SIZE 32

extern int register_ftrace_graph(struct fgraph_ops *ops);
extern void unregister_ftrace_graph(struct fgraph_ops *ops);

/**
 * ftrace_graph_is_dead - returns true if ftrace_graph_stop() was called
 *
 * ftrace_graph_stop() is called when a severe error is detected in
 * the function graph tracing. This function is called by the critical
 * paths of function graph to keep those paths from doing any more harm.
 */
DECLARE_STATIC_KEY_FALSE(kill_ftrace_graph);

static inline bool ftrace_graph_is_dead(void)
{
	return static_branch_unlikely(&kill_ftrace_graph);
}

extern void ftrace_graph_stop(void);

/* The current handlers in use */
extern trace_func_graph_ret_t ftrace_graph_return;
extern trace_func_graph_ent_t ftrace_graph_entry;

extern void ftrace_graph_init_task(struct task_struct *t);
extern void ftrace_graph_exit_task(struct task_struct *t);
extern void ftrace_graph_init_idle_task(struct task_struct *t, int cpu);

static inline void pause_graph_tracing(void)
{
	atomic_inc(&current->tracing_graph_pause);
}

static inline void unpause_graph_tracing(void)
{
	atomic_dec(&current->tracing_graph_pause);
}
#else /* !CONFIG_FUNCTION_GRAPH_TRACER */

#define __notrace_funcgraph

static inline void ftrace_graph_init_task(struct task_struct *t) { }
static inline void ftrace_graph_exit_task(struct task_struct *t) { }
static inline void ftrace_graph_init_idle_task(struct task_struct *t, int cpu) { }

/* Define as macros as fgraph_ops may not be defined */
#define register_ftrace_graph(ops) ({ -1; })
#define unregister_ftrace_graph(ops) do { } while (0)

static inline unsigned long
ftrace_graph_ret_addr(struct task_struct *task, int *idx, unsigned long ret,
		      unsigned long *retp)
{
	return ret;
}

static inline void pause_graph_tracing(void) { }
static inline void unpause_graph_tracing(void) { }
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */

#ifdef CONFIG_TRACING
enum ftrace_dump_mode;

extern enum ftrace_dump_mode ftrace_dump_on_oops;
extern int tracepoint_printk;

extern void disable_trace_on_warning(void);
extern int __disable_trace_on_warning;

int tracepoint_printk_sysctl(struct ctl_table *table, int write,
			     void *buffer, size_t *lenp, loff_t *ppos);

#else /* CONFIG_TRACING */
static inline void  disable_trace_on_warning(void) { }
#endif /* CONFIG_TRACING */

#ifdef CONFIG_FTRACE_SYSCALLS

unsigned long arch_syscall_addr(int nr);

#endif /* CONFIG_FTRACE_SYSCALLS */

#endif /* _LINUX_FTRACE_H */
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!