Current File : //proc/thread-self/root/usr/src/linux-headers-6.8.0-59/arch/arm64/include/asm/memory.h
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Based on arch/arm/include/asm/memory.h
 *
 * Copyright (C) 2000-2002 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * Note: this file should not be included by non-asm/.h files
 */
#ifndef __ASM_MEMORY_H
#define __ASM_MEMORY_H

#include <linux/const.h>
#include <linux/sizes.h>
#include <asm/page-def.h>

/*
 * Size of the PCI I/O space. This must remain a power of two so that
 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
 */
#define PCI_IO_SIZE		SZ_16M

/*
 * VMEMMAP_SIZE - allows the whole linear region to be covered by
 *                a struct page array
 *
 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
 * needs to cover the memory region from the beginning of the 52-bit
 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
 * of the VMEMMAP where 52-bit support is not available in hardware.
 */
#define VMEMMAP_SHIFT	(PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE	((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT)

/*
 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
 *               start of the TTBR1 address space.
 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
 * VA_BITS - the maximum number of bits for virtual addresses.
 */
#define VA_BITS			(CONFIG_ARM64_VA_BITS)
#define _PAGE_OFFSET(va)	(-(UL(1) << (va)))
#define PAGE_OFFSET		(_PAGE_OFFSET(VA_BITS))
#define KIMAGE_VADDR		(MODULES_END)
#define MODULES_END		(MODULES_VADDR + MODULES_VSIZE)
#define MODULES_VADDR		(_PAGE_END(VA_BITS_MIN))
#define MODULES_VSIZE		(SZ_2G)
#define VMEMMAP_START		(-(UL(1) << (VA_BITS - VMEMMAP_SHIFT)))
#define VMEMMAP_END		(VMEMMAP_START + VMEMMAP_SIZE)
#define PCI_IO_END		(VMEMMAP_START - SZ_8M)
#define PCI_IO_START		(PCI_IO_END - PCI_IO_SIZE)
#define FIXADDR_TOP		(VMEMMAP_START - SZ_32M)

#if VA_BITS > 48
#define VA_BITS_MIN		(48)
#else
#define VA_BITS_MIN		(VA_BITS)
#endif

#define _PAGE_END(va)		(-(UL(1) << ((va) - 1)))

#define KERNEL_START		_text
#define KERNEL_END		_end

/*
 * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the
 * kernel virtual address space for storing the shadow memory respectively.
 *
 * The mapping between a virtual memory address and its corresponding shadow
 * memory address is defined based on the formula:
 *
 *     shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET
 *
 * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map
 * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets
 * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of
 * the shadow memory region.
 *
 * Based on this mapping, we define two constants:
 *
 *     KASAN_SHADOW_START: the start of the shadow memory region;
 *     KASAN_SHADOW_END: the end of the shadow memory region.
 *
 * KASAN_SHADOW_END is defined first as the shadow address that corresponds to
 * the upper bound of possible virtual kernel memory addresses UL(1) << 64
 * according to the mapping formula.
 *
 * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow
 * memory start must map to the lowest possible kernel virtual memory address
 * and thus it depends on the actual bitness of the address space.
 *
 * As KASAN inserts redzones between stack variables, this increases the stack
 * memory usage significantly. Thus, we double the (minimum) stack size.
 */
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
#define KASAN_SHADOW_OFFSET	_AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
#define KASAN_SHADOW_END	((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET)
#define _KASAN_SHADOW_START(va)	(KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT)))
#define KASAN_SHADOW_START	_KASAN_SHADOW_START(vabits_actual)
#define PAGE_END		KASAN_SHADOW_START
#define KASAN_THREAD_SHIFT	1
#else
#define KASAN_THREAD_SHIFT	0
#define PAGE_END		(_PAGE_END(VA_BITS_MIN))
#endif /* CONFIG_KASAN */

#define MIN_THREAD_SHIFT	(14 + KASAN_THREAD_SHIFT)

/*
 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
 * stacks are a multiple of page size.
 */
#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
#define THREAD_SHIFT		PAGE_SHIFT
#else
#define THREAD_SHIFT		MIN_THREAD_SHIFT
#endif

#if THREAD_SHIFT >= PAGE_SHIFT
#define THREAD_SIZE_ORDER	(THREAD_SHIFT - PAGE_SHIFT)
#endif

#define THREAD_SIZE		(UL(1) << THREAD_SHIFT)

/*
 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
 * assembly.
 */
#ifdef CONFIG_VMAP_STACK
#define THREAD_ALIGN		(2 * THREAD_SIZE)
#else
#define THREAD_ALIGN		THREAD_SIZE
#endif

#define IRQ_STACK_SIZE		THREAD_SIZE

#define OVERFLOW_STACK_SIZE	SZ_4K

/*
 * With the minimum frame size of [x29, x30], exactly half the combined
 * sizes of the hyp and overflow stacks is the maximum size needed to
 * save the unwinded stacktrace; plus an additional entry to delimit the
 * end.
 */
#define NVHE_STACKTRACE_SIZE	((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long))

/*
 * Alignment of kernel segments (e.g. .text, .data).
 *
 *  4 KB granule:  16 level 3 entries, with contiguous bit
 * 16 KB granule:   4 level 3 entries, without contiguous bit
 * 64 KB granule:   1 level 3 entry
 */
#define SEGMENT_ALIGN		SZ_64K

/*
 * Memory types available.
 *
 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
 *	      the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
 *	      that protection_map[] only contains MT_NORMAL attributes.
 */
#define MT_NORMAL		0
#define MT_NORMAL_TAGGED	1
#define MT_NORMAL_NC		2
#define MT_DEVICE_nGnRnE	3
#define MT_DEVICE_nGnRE		4

/*
 * Memory types for Stage-2 translation
 */
#define MT_S2_NORMAL		0xf
#define MT_S2_DEVICE_nGnRE	0x1

/*
 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
 * Stage-2 enforces Normal-WB and Device-nGnRE
 */
#define MT_S2_FWB_NORMAL	6
#define MT_S2_FWB_DEVICE_nGnRE	1

#ifdef CONFIG_ARM64_4K_PAGES
#define IOREMAP_MAX_ORDER	(PUD_SHIFT)
#else
#define IOREMAP_MAX_ORDER	(PMD_SHIFT)
#endif

/*
 *  Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated
 *  until link time.
 */
#define RESERVED_SWAPPER_OFFSET	(PAGE_SIZE)

/*
 *  Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated
 *  until link time.
 */
#define TRAMP_SWAPPER_OFFSET	(2 * PAGE_SIZE)

#ifndef __ASSEMBLY__

#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/mmdebug.h>
#include <linux/types.h>
#include <asm/boot.h>
#include <asm/bug.h>
#include <asm/sections.h>

#if VA_BITS > 48
extern u64			vabits_actual;
#else
#define vabits_actual		((u64)VA_BITS)
#endif

extern s64			memstart_addr;
/* PHYS_OFFSET - the physical address of the start of memory. */
#define PHYS_OFFSET		({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })

/* the offset between the kernel virtual and physical mappings */
extern u64			kimage_voffset;

static inline unsigned long kaslr_offset(void)
{
	return (u64)&_text - KIMAGE_VADDR;
}

#ifdef CONFIG_RANDOMIZE_BASE
void kaslr_init(void);
static inline bool kaslr_enabled(void)
{
	extern bool __kaslr_is_enabled;
	return __kaslr_is_enabled;
}
#else
static inline void kaslr_init(void) { }
static inline bool kaslr_enabled(void) { return false; }
#endif

/*
 * Allow all memory at the discovery stage. We will clip it later.
 */
#define MIN_MEMBLOCK_ADDR	0
#define MAX_MEMBLOCK_ADDR	U64_MAX

/*
 * PFNs are used to describe any physical page; this means
 * PFN 0 == physical address 0.
 *
 * This is the PFN of the first RAM page in the kernel
 * direct-mapped view.  We assume this is the first page
 * of RAM in the mem_map as well.
 */
#define PHYS_PFN_OFFSET	(PHYS_OFFSET >> PAGE_SHIFT)

/*
 * When dealing with data aborts, watchpoints, or instruction traps we may end
 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
 * pass on to access_ok(), for instance.
 */
#define __untagged_addr(addr)	\
	((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))

#define untagged_addr(addr)	({					\
	u64 __addr = (__force u64)(addr);					\
	__addr &= __untagged_addr(__addr);				\
	(__force __typeof__(addr))__addr;				\
})

#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
#define __tag_shifted(tag)	((u64)(tag) << 56)
#define __tag_reset(addr)	__untagged_addr(addr)
#define __tag_get(addr)		(__u8)((u64)(addr) >> 56)
#else
#define __tag_shifted(tag)	0UL
#define __tag_reset(addr)	(addr)
#define __tag_get(addr)		0
#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */

static inline const void *__tag_set(const void *addr, u8 tag)
{
	u64 __addr = (u64)addr & ~__tag_shifted(0xff);
	return (const void *)(__addr | __tag_shifted(tag));
}

#ifdef CONFIG_KASAN_HW_TAGS
#define arch_enable_tag_checks_sync()		mte_enable_kernel_sync()
#define arch_enable_tag_checks_async()		mte_enable_kernel_async()
#define arch_enable_tag_checks_asymm()		mte_enable_kernel_asymm()
#define arch_suppress_tag_checks_start()	mte_enable_tco()
#define arch_suppress_tag_checks_stop()		mte_disable_tco()
#define arch_force_async_tag_fault()		mte_check_tfsr_exit()
#define arch_get_random_tag()			mte_get_random_tag()
#define arch_get_mem_tag(addr)			mte_get_mem_tag(addr)
#define arch_set_mem_tag_range(addr, size, tag, init)	\
			mte_set_mem_tag_range((addr), (size), (tag), (init))
#endif /* CONFIG_KASAN_HW_TAGS */

/*
 * Physical vs virtual RAM address space conversion.  These are
 * private definitions which should NOT be used outside memory.h
 * files.  Use virt_to_phys/phys_to_virt/__pa/__va instead.
 */


/*
 * Check whether an arbitrary address is within the linear map, which
 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the
 * kernel's TTBR1 address range.
 */
#define __is_lm_address(addr)	(((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))

#define __lm_to_phys(addr)	(((addr) - PAGE_OFFSET) + PHYS_OFFSET)
#define __kimg_to_phys(addr)	((addr) - kimage_voffset)

#define __virt_to_phys_nodebug(x) ({					\
	phys_addr_t __x = (phys_addr_t)(__tag_reset(x));		\
	__is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x);	\
})

#define __pa_symbol_nodebug(x)	__kimg_to_phys((phys_addr_t)(x))

#ifdef CONFIG_DEBUG_VIRTUAL
extern phys_addr_t __virt_to_phys(unsigned long x);
extern phys_addr_t __phys_addr_symbol(unsigned long x);
#else
#define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
#define __phys_addr_symbol(x)	__pa_symbol_nodebug(x)
#endif /* CONFIG_DEBUG_VIRTUAL */

#define __phys_to_virt(x)	((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
#define __phys_to_kimg(x)	((unsigned long)((x) + kimage_voffset))

/*
 * Convert a page to/from a physical address
 */
#define page_to_phys(page)	(__pfn_to_phys(page_to_pfn(page)))
#define phys_to_page(phys)	(pfn_to_page(__phys_to_pfn(phys)))

/*
 * Note: Drivers should NOT use these.  They are the wrong
 * translation for translating DMA addresses.  Use the driver
 * DMA support - see dma-mapping.h.
 */
#define virt_to_phys virt_to_phys
static inline phys_addr_t virt_to_phys(const volatile void *x)
{
	return __virt_to_phys((unsigned long)(x));
}

#define phys_to_virt phys_to_virt
static inline void *phys_to_virt(phys_addr_t x)
{
	return (void *)(__phys_to_virt(x));
}

/* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */
#include <asm-generic/memory_model.h>

static inline unsigned long virt_to_pfn(const void *kaddr)
{
	return __phys_to_pfn(virt_to_phys(kaddr));
}

/*
 * Drivers should NOT use these either.
 */
#define __pa(x)			__virt_to_phys((unsigned long)(x))
#define __pa_symbol(x)		__phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
#define __pa_nodebug(x)		__virt_to_phys_nodebug((unsigned long)(x))
#define __va(x)			((void *)__phys_to_virt((phys_addr_t)(x)))
#define pfn_to_kaddr(pfn)	__va((pfn) << PAGE_SHIFT)
#define sym_to_pfn(x)		__phys_to_pfn(__pa_symbol(x))

/*
 *  virt_to_page(x)	convert a _valid_ virtual address to struct page *
 *  virt_addr_valid(x)	indicates whether a virtual address is valid
 */
#define ARCH_PFN_OFFSET		((unsigned long)PHYS_PFN_OFFSET)

#if defined(CONFIG_DEBUG_VIRTUAL)
#define page_to_virt(x)	({						\
	__typeof__(x) __page = x;					\
	void *__addr = __va(page_to_phys(__page));			\
	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
})
#define virt_to_page(x)		pfn_to_page(virt_to_pfn(x))
#else
#define page_to_virt(x)	({						\
	__typeof__(x) __page = x;					\
	u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
	u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE);			\
	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
})

#define virt_to_page(x)	({						\
	u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE;	\
	u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page));	\
	(struct page *)__addr;						\
})
#endif /* CONFIG_DEBUG_VIRTUAL */

#define virt_addr_valid(addr)	({					\
	__typeof__(addr) __addr = __tag_reset(addr);			\
	__is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr));	\
})

void dump_mem_limit(void);
#endif /* !ASSEMBLY */

/*
 * Given that the GIC architecture permits ITS implementations that can only be
 * configured with a LPI table address once, GICv3 systems with many CPUs may
 * end up reserving a lot of different regions after a kexec for their LPI
 * tables (one per CPU), as we are forced to reuse the same memory after kexec
 * (and thus reserve it persistently with EFI beforehand)
 */
#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
# define INIT_MEMBLOCK_RESERVED_REGIONS	(INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
#endif

/*
 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory
 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into
 * multiple parts. As a result, the number of memory regions is large.
 */
#ifdef CONFIG_EFI
#define INIT_MEMBLOCK_MEMORY_REGIONS	(INIT_MEMBLOCK_REGIONS * 8)
#endif


#endif /* __ASM_MEMORY_H */
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!