Current File : //proc/thread-self/root/usr/lib/python3.12/csv.py
"""
csv.py - read/write/investigate CSV files
"""

import re
import types
from _csv import Error, __version__, writer, reader, register_dialect, \
                 unregister_dialect, get_dialect, list_dialects, \
                 field_size_limit, \
                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
                 QUOTE_STRINGS, QUOTE_NOTNULL, \
                 __doc__
from _csv import Dialect as _Dialect

from io import StringIO

__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
           "QUOTE_STRINGS", "QUOTE_NOTNULL",
           "Error", "Dialect", "__doc__", "excel", "excel_tab",
           "field_size_limit", "reader", "writer",
           "register_dialect", "get_dialect", "list_dialects", "Sniffer",
           "unregister_dialect", "__version__", "DictReader", "DictWriter",
           "unix_dialect"]

class Dialect:
    """Describe a CSV dialect.

    This must be subclassed (see csv.excel).  Valid attributes are:
    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
    lineterminator, quoting.

    """
    _name = ""
    _valid = False
    # placeholders
    delimiter = None
    quotechar = None
    escapechar = None
    doublequote = None
    skipinitialspace = None
    lineterminator = None
    quoting = None

    def __init__(self):
        if self.__class__ != Dialect:
            self._valid = True
        self._validate()

    def _validate(self):
        try:
            _Dialect(self)
        except TypeError as e:
            # We do this for compatibility with py2.3
            raise Error(str(e))

class excel(Dialect):
    """Describe the usual properties of Excel-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\r\n'
    quoting = QUOTE_MINIMAL
register_dialect("excel", excel)

class excel_tab(excel):
    """Describe the usual properties of Excel-generated TAB-delimited files."""
    delimiter = '\t'
register_dialect("excel-tab", excel_tab)

class unix_dialect(Dialect):
    """Describe the usual properties of Unix-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\n'
    quoting = QUOTE_ALL
register_dialect("unix", unix_dialect)


class DictReader:
    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
                 dialect="excel", *args, **kwds):
        if fieldnames is not None and iter(fieldnames) is fieldnames:
            fieldnames = list(fieldnames)
        self._fieldnames = fieldnames   # list of keys for the dict
        self.restkey = restkey          # key to catch long rows
        self.restval = restval          # default value for short rows
        self.reader = reader(f, dialect, *args, **kwds)
        self.dialect = dialect
        self.line_num = 0

    def __iter__(self):
        return self

    @property
    def fieldnames(self):
        if self._fieldnames is None:
            try:
                self._fieldnames = next(self.reader)
            except StopIteration:
                pass
        self.line_num = self.reader.line_num
        return self._fieldnames

    @fieldnames.setter
    def fieldnames(self, value):
        self._fieldnames = value

    def __next__(self):
        if self.line_num == 0:
            # Used only for its side effect.
            self.fieldnames
        row = next(self.reader)
        self.line_num = self.reader.line_num

        # unlike the basic reader, we prefer not to return blanks,
        # because we will typically wind up with a dict full of None
        # values
        while row == []:
            row = next(self.reader)
        d = dict(zip(self.fieldnames, row))
        lf = len(self.fieldnames)
        lr = len(row)
        if lf < lr:
            d[self.restkey] = row[lf:]
        elif lf > lr:
            for key in self.fieldnames[lr:]:
                d[key] = self.restval
        return d

    __class_getitem__ = classmethod(types.GenericAlias)


class DictWriter:
    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
                 dialect="excel", *args, **kwds):
        if fieldnames is not None and iter(fieldnames) is fieldnames:
            fieldnames = list(fieldnames)
        self.fieldnames = fieldnames    # list of keys for the dict
        self.restval = restval          # for writing short dicts
        extrasaction = extrasaction.lower()
        if extrasaction not in ("raise", "ignore"):
            raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
                             % extrasaction)
        self.extrasaction = extrasaction
        self.writer = writer(f, dialect, *args, **kwds)

    def writeheader(self):
        header = dict(zip(self.fieldnames, self.fieldnames))
        return self.writerow(header)

    def _dict_to_list(self, rowdict):
        if self.extrasaction == "raise":
            wrong_fields = rowdict.keys() - self.fieldnames
            if wrong_fields:
                raise ValueError("dict contains fields not in fieldnames: "
                                 + ", ".join([repr(x) for x in wrong_fields]))
        return (rowdict.get(key, self.restval) for key in self.fieldnames)

    def writerow(self, rowdict):
        return self.writer.writerow(self._dict_to_list(rowdict))

    def writerows(self, rowdicts):
        return self.writer.writerows(map(self._dict_to_list, rowdicts))

    __class_getitem__ = classmethod(types.GenericAlias)


class Sniffer:
    '''
    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
    Returns a Dialect object.
    '''
    def __init__(self):
        # in case there is more than one possible delimiter
        self.preferred = [',', '\t', ';', ' ', ':']


    def sniff(self, sample, delimiters=None):
        """
        Returns a dialect (or None) corresponding to the sample
        """

        quotechar, doublequote, delimiter, skipinitialspace = \
                   self._guess_quote_and_delimiter(sample, delimiters)
        if not delimiter:
            delimiter, skipinitialspace = self._guess_delimiter(sample,
                                                                delimiters)

        if not delimiter:
            raise Error("Could not determine delimiter")

        class dialect(Dialect):
            _name = "sniffed"
            lineterminator = '\r\n'
            quoting = QUOTE_MINIMAL
            # escapechar = ''

        dialect.doublequote = doublequote
        dialect.delimiter = delimiter
        # _csv.reader won't accept a quotechar of ''
        dialect.quotechar = quotechar or '"'
        dialect.skipinitialspace = skipinitialspace

        return dialect


    def _guess_quote_and_delimiter(self, data, delimiters):
        """
        Looks for text enclosed between two identical quotes
        (the probable quotechar) which are preceded and followed
        by the same character (the probable delimiter).
        For example:
                         ,'some text',
        The quote with the most wins, same with the delimiter.
        If there is no quotechar the delimiter can't be determined
        this way.
        """

        matches = []
        for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
                      r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',   # ,".*?"
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(data)
            if matches:
                break

        if not matches:
            # (quotechar, doublequote, delimiter, skipinitialspace)
            return ('', False, None, 0)
        quotes = {}
        delims = {}
        spaces = 0
        groupindex = regexp.groupindex
        for m in matches:
            n = groupindex['quote'] - 1
            key = m[n]
            if key:
                quotes[key] = quotes.get(key, 0) + 1
            try:
                n = groupindex['delim'] - 1
                key = m[n]
            except KeyError:
                continue
            if key and (delimiters is None or key in delimiters):
                delims[key] = delims.get(key, 0) + 1
            try:
                n = groupindex['space'] - 1
            except KeyError:
                continue
            if m[n]:
                spaces += 1

        quotechar = max(quotes, key=quotes.get)

        if delims:
            delim = max(delims, key=delims.get)
            skipinitialspace = delims[delim] == spaces
            if delim == '\n': # most likely a file with a single column
                delim = ''
        else:
            # there is *no* delimiter, it's a single column of quoted data
            delim = ''
            skipinitialspace = 0

        # if we see an extra quote between delimiters, we've got a
        # double quoted format
        dq_regexp = re.compile(
                               r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
                               {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)



        if dq_regexp.search(data):
            doublequote = True
        else:
            doublequote = False

        return (quotechar, doublequote, delim, skipinitialspace)


    def _guess_delimiter(self, data, delimiters):
        """
        The delimiter /should/ occur the same number of times on
        each row. However, due to malformed data, it may not. We don't want
        an all or nothing approach, so we allow for small variations in this
        number.
          1) build a table of the frequency of each character on every line.
          2) build a table of frequencies of this frequency (meta-frequency?),
             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
             7 times in 2 rows'
          3) use the mode of the meta-frequency to determine the /expected/
             frequency for that character
          4) find out how often the character actually meets that goal
          5) the character that best meets its goal is the delimiter
        For performance reasons, the data is evaluated in chunks, so it can
        try and evaluate the smallest portion of the data possible, evaluating
        additional chunks as necessary.
        """

        data = list(filter(None, data.split('\n')))

        ascii = [chr(c) for c in range(127)] # 7-bit ASCII

        # build frequency tables
        chunkLength = min(10, len(data))
        iteration = 0
        charFrequency = {}
        modes = {}
        delims = {}
        start, end = 0, chunkLength
        while start < len(data):
            iteration += 1
            for line in data[start:end]:
                for char in ascii:
                    metaFrequency = charFrequency.get(char, {})
                    # must count even if frequency is 0
                    freq = line.count(char)
                    # value is the mode
                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
                    charFrequency[char] = metaFrequency

            for char in charFrequency.keys():
                items = list(charFrequency[char].items())
                if len(items) == 1 and items[0][0] == 0:
                    continue
                # get the mode of the frequencies
                if len(items) > 1:
                    modes[char] = max(items, key=lambda x: x[1])
                    # adjust the mode - subtract the sum of all
                    # other frequencies
                    items.remove(modes[char])
                    modes[char] = (modes[char][0], modes[char][1]
                                   - sum(item[1] for item in items))
                else:
                    modes[char] = items[0]

            # build a list of possible delimiters
            modeList = modes.items()
            total = float(min(chunkLength * iteration, len(data)))
            # (rows of consistent data) / (number of rows) = 100%
            consistency = 1.0
            # minimum consistency threshold
            threshold = 0.9
            while len(delims) == 0 and consistency >= threshold:
                for k, v in modeList:
                    if v[0] > 0 and v[1] > 0:
                        if ((v[1]/total) >= consistency and
                            (delimiters is None or k in delimiters)):
                            delims[k] = v
                consistency -= 0.01

            if len(delims) == 1:
                delim = list(delims.keys())[0]
                skipinitialspace = (data[0].count(delim) ==
                                    data[0].count("%c " % delim))
                return (delim, skipinitialspace)

            # analyze another chunkLength lines
            start = end
            end += chunkLength

        if not delims:
            return ('', 0)

        # if there's more than one, fall back to a 'preferred' list
        if len(delims) > 1:
            for d in self.preferred:
                if d in delims.keys():
                    skipinitialspace = (data[0].count(d) ==
                                        data[0].count("%c " % d))
                    return (d, skipinitialspace)

        # nothing else indicates a preference, pick the character that
        # dominates(?)
        items = [(v,k) for (k,v) in delims.items()]
        items.sort()
        delim = items[-1][1]

        skipinitialspace = (data[0].count(delim) ==
                            data[0].count("%c " % delim))
        return (delim, skipinitialspace)


    def has_header(self, sample):
        # Creates a dictionary of types of data in each column. If any
        # column is of a single type (say, integers), *except* for the first
        # row, then the first row is presumed to be labels. If the type
        # can't be determined, it is assumed to be a string in which case
        # the length of the string is the determining factor: if all of the
        # rows except for the first are the same length, it's a header.
        # Finally, a 'vote' is taken at the end for each column, adding or
        # subtracting from the likelihood of the first row being a header.

        rdr = reader(StringIO(sample), self.sniff(sample))

        header = next(rdr) # assume first row is header

        columns = len(header)
        columnTypes = {}
        for i in range(columns): columnTypes[i] = None

        checked = 0
        for row in rdr:
            # arbitrary number of rows to check, to keep it sane
            if checked > 20:
                break
            checked += 1

            if len(row) != columns:
                continue # skip rows that have irregular number of columns

            for col in list(columnTypes.keys()):
                thisType = complex
                try:
                    thisType(row[col])
                except (ValueError, OverflowError):
                    # fallback to length of string
                    thisType = len(row[col])

                if thisType != columnTypes[col]:
                    if columnTypes[col] is None: # add new column type
                        columnTypes[col] = thisType
                    else:
                        # type is inconsistent, remove column from
                        # consideration
                        del columnTypes[col]

        # finally, compare results against first row and "vote"
        # on whether it's a header
        hasHeader = 0
        for col, colType in columnTypes.items():
            if isinstance(colType, int): # it's a length
                if len(header[col]) != colType:
                    hasHeader += 1
                else:
                    hasHeader -= 1
            else: # attempt typecast
                try:
                    colType(header[col])
                except (ValueError, TypeError):
                    hasHeader += 1
                else:
                    hasHeader -= 1

        return hasHeader > 0
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!