Current File : //proc/thread-self/root/usr/include/python3.12/internal/pycore_object.h
#ifndef Py_INTERNAL_OBJECT_H
#define Py_INTERNAL_OBJECT_H
#ifdef __cplusplus
extern "C" {
#endif

#ifndef Py_BUILD_CORE
#  error "this header requires Py_BUILD_CORE define"
#endif

#include <stdbool.h>
#include "pycore_gc.h"            // _PyObject_GC_IS_TRACKED()
#include "pycore_interp.h"        // PyInterpreterState.gc
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
#include "pycore_runtime.h"       // _PyRuntime

/* We need to maintain an internal copy of Py{Var}Object_HEAD_INIT to avoid
   designated initializer conflicts in C++20. If we use the deinition in
   object.h, we will be mixing designated and non-designated initializers in
   pycore objects which is forbiddent in C++20. However, if we then use
   designated initializers in object.h then Extensions without designated break.
   Furthermore, we can't use designated initializers in Extensions since these
   are not supported pre-C++20. Thus, keeping an internal copy here is the most
   backwards compatible solution */
#define _PyObject_HEAD_INIT(type)         \
    {                                     \
        _PyObject_EXTRA_INIT              \
        .ob_refcnt = _Py_IMMORTAL_REFCNT, \
        .ob_type = (type)                 \
    },
#define _PyVarObject_HEAD_INIT(type, size)    \
    {                                         \
        .ob_base = _PyObject_HEAD_INIT(type)  \
        .ob_size = size                       \
    },

PyAPI_FUNC(void) _Py_NO_RETURN _Py_FatalRefcountErrorFunc(
    const char *func,
    const char *message);

#define _Py_FatalRefcountError(message) \
    _Py_FatalRefcountErrorFunc(__func__, (message))


#ifdef Py_REF_DEBUG
/* The symbol is only exposed in the API for the sake of extensions
   built against the pre-3.12 stable ABI. */
PyAPI_DATA(Py_ssize_t) _Py_RefTotal;

extern void _Py_AddRefTotal(PyInterpreterState *, Py_ssize_t);
extern void _Py_IncRefTotal(PyInterpreterState *);
extern void _Py_DecRefTotal(PyInterpreterState *);

#  define _Py_DEC_REFTOTAL(interp) \
    interp->object_state.reftotal--
#endif

// Increment reference count by n
static inline void _Py_RefcntAdd(PyObject* op, Py_ssize_t n)
{
    if (_Py_IsImmortal(op)) {
        return;
    }
#ifdef Py_REF_DEBUG
    _Py_AddRefTotal(_PyInterpreterState_GET(), n);
#endif
    op->ob_refcnt += n;
}
#define _Py_RefcntAdd(op, n) _Py_RefcntAdd(_PyObject_CAST(op), n)

static inline void _Py_SetImmortal(PyObject *op)
{
    if (op) {
        op->ob_refcnt = _Py_IMMORTAL_REFCNT;
    }
}
#define _Py_SetImmortal(op) _Py_SetImmortal(_PyObject_CAST(op))

/* _Py_ClearImmortal() should only be used during runtime finalization. */
static inline void _Py_ClearImmortal(PyObject *op)
{
    if (op) {
        assert(op->ob_refcnt == _Py_IMMORTAL_REFCNT);
        op->ob_refcnt = 1;
        Py_DECREF(op);
    }
}
#define _Py_ClearImmortal(op) \
    do { \
        _Py_ClearImmortal(_PyObject_CAST(op)); \
        op = NULL; \
    } while (0)

static inline void
_Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct)
{
    if (_Py_IsImmortal(op)) {
        return;
    }
    _Py_DECREF_STAT_INC();
#ifdef Py_REF_DEBUG
    _Py_DEC_REFTOTAL(_PyInterpreterState_GET());
#endif
    if (--op->ob_refcnt != 0) {
        assert(op->ob_refcnt > 0);
    }
    else {
#ifdef Py_TRACE_REFS
        _Py_ForgetReference(op);
#endif
        destruct(op);
    }
}

static inline void
_Py_DECREF_NO_DEALLOC(PyObject *op)
{
    if (_Py_IsImmortal(op)) {
        return;
    }
    _Py_DECREF_STAT_INC();
#ifdef Py_REF_DEBUG
    _Py_DEC_REFTOTAL(_PyInterpreterState_GET());
#endif
    op->ob_refcnt--;
#ifdef Py_DEBUG
    if (op->ob_refcnt <= 0) {
        _Py_FatalRefcountError("Expected a positive remaining refcount");
    }
#endif
}

#ifdef Py_REF_DEBUG
#  undef _Py_DEC_REFTOTAL
#endif


PyAPI_FUNC(int) _PyType_CheckConsistency(PyTypeObject *type);
PyAPI_FUNC(int) _PyDict_CheckConsistency(PyObject *mp, int check_content);

/* Update the Python traceback of an object. This function must be called
   when a memory block is reused from a free list.

   Internal function called by _Py_NewReference(). */
extern int _PyTraceMalloc_NewReference(PyObject *op);

// Fast inlined version of PyType_HasFeature()
static inline int
_PyType_HasFeature(PyTypeObject *type, unsigned long feature) {
    return ((type->tp_flags & feature) != 0);
}

extern void _PyType_InitCache(PyInterpreterState *interp);

extern void _PyObject_InitState(PyInterpreterState *interp);

/* Inline functions trading binary compatibility for speed:
   _PyObject_Init() is the fast version of PyObject_Init(), and
   _PyObject_InitVar() is the fast version of PyObject_InitVar().

   These inline functions must not be called with op=NULL. */
static inline void
_PyObject_Init(PyObject *op, PyTypeObject *typeobj)
{
    assert(op != NULL);
    Py_SET_TYPE(op, typeobj);
    if (_PyType_HasFeature(typeobj, Py_TPFLAGS_HEAPTYPE)) {
        Py_INCREF(typeobj);
    }
    _Py_NewReference(op);
}

static inline void
_PyObject_InitVar(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size)
{
    assert(op != NULL);
    assert(typeobj != &PyLong_Type);
    _PyObject_Init((PyObject *)op, typeobj);
    Py_SET_SIZE(op, size);
}


/* Tell the GC to track this object.
 *
 * The object must not be tracked by the GC.
 *
 * NB: While the object is tracked by the collector, it must be safe to call the
 * ob_traverse method.
 *
 * Internal note: interp->gc.generation0->_gc_prev doesn't have any bit flags
 * because it's not object header.  So we don't use _PyGCHead_PREV() and
 * _PyGCHead_SET_PREV() for it to avoid unnecessary bitwise operations.
 *
 * See also the public PyObject_GC_Track() function.
 */
static inline void _PyObject_GC_TRACK(
// The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined
#ifndef NDEBUG
    const char *filename, int lineno,
#endif
    PyObject *op)
{
    _PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op),
                          "object already tracked by the garbage collector",
                          filename, lineno, __func__);

    PyGC_Head *gc = _Py_AS_GC(op);
    _PyObject_ASSERT_FROM(op,
                          (gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0,
                          "object is in generation which is garbage collected",
                          filename, lineno, __func__);

    PyInterpreterState *interp = _PyInterpreterState_GET();
    PyGC_Head *generation0 = interp->gc.generation0;
    PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev);
    _PyGCHead_SET_NEXT(last, gc);
    _PyGCHead_SET_PREV(gc, last);
    _PyGCHead_SET_NEXT(gc, generation0);
    generation0->_gc_prev = (uintptr_t)gc;
}

/* Tell the GC to stop tracking this object.
 *
 * Internal note: This may be called while GC. So _PyGC_PREV_MASK_COLLECTING
 * must be cleared. But _PyGC_PREV_MASK_FINALIZED bit is kept.
 *
 * The object must be tracked by the GC.
 *
 * See also the public PyObject_GC_UnTrack() which accept an object which is
 * not tracked.
 */
static inline void _PyObject_GC_UNTRACK(
// The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined
#ifndef NDEBUG
    const char *filename, int lineno,
#endif
    PyObject *op)
{
    _PyObject_ASSERT_FROM(op, _PyObject_GC_IS_TRACKED(op),
                          "object not tracked by the garbage collector",
                          filename, lineno, __func__);

    PyGC_Head *gc = _Py_AS_GC(op);
    PyGC_Head *prev = _PyGCHead_PREV(gc);
    PyGC_Head *next = _PyGCHead_NEXT(gc);
    _PyGCHead_SET_NEXT(prev, next);
    _PyGCHead_SET_PREV(next, prev);
    gc->_gc_next = 0;
    gc->_gc_prev &= _PyGC_PREV_MASK_FINALIZED;
}

// Macros to accept any type for the parameter, and to automatically pass
// the filename and the filename (if NDEBUG is not defined) where the macro
// is called.
#ifdef NDEBUG
#  define _PyObject_GC_TRACK(op) \
        _PyObject_GC_TRACK(_PyObject_CAST(op))
#  define _PyObject_GC_UNTRACK(op) \
        _PyObject_GC_UNTRACK(_PyObject_CAST(op))
#else
#  define _PyObject_GC_TRACK(op) \
        _PyObject_GC_TRACK(__FILE__, __LINE__, _PyObject_CAST(op))
#  define _PyObject_GC_UNTRACK(op) \
        _PyObject_GC_UNTRACK(__FILE__, __LINE__, _PyObject_CAST(op))
#endif

#ifdef Py_REF_DEBUG
extern void _PyInterpreterState_FinalizeRefTotal(PyInterpreterState *);
extern void _Py_FinalizeRefTotal(_PyRuntimeState *);
extern void _PyDebug_PrintTotalRefs(void);
#endif

#ifdef Py_TRACE_REFS
extern void _Py_AddToAllObjects(PyObject *op, int force);
extern void _Py_PrintReferences(PyInterpreterState *, FILE *);
extern void _Py_PrintReferenceAddresses(PyInterpreterState *, FILE *);
#endif


/* Return the *address* of the object's weaklist.  The address may be
 * dereferenced to get the current head of the weaklist.  This is useful
 * for iterating over the linked list of weakrefs, especially when the
 * list is being modified externally (e.g. refs getting removed).
 *
 * The returned pointer should not be used to change the head of the list
 * nor should it be used to add, remove, or swap any refs in the list.
 * That is the sole responsibility of the code in weakrefobject.c.
 */
static inline PyObject **
_PyObject_GET_WEAKREFS_LISTPTR(PyObject *op)
{
    if (PyType_Check(op) &&
            ((PyTypeObject *)op)->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) {
        PyInterpreterState *interp = _PyInterpreterState_GET();
        static_builtin_state *state = _PyStaticType_GetState(
                                                interp, (PyTypeObject *)op);
        return _PyStaticType_GET_WEAKREFS_LISTPTR(state);
    }
    // Essentially _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET():
    Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset;
    return (PyObject **)((char *)op + offset);
}

/* This is a special case of _PyObject_GET_WEAKREFS_LISTPTR().
 * Only the most fundamental lookup path is used.
 * Consequently, static types should not be used.
 *
 * For static builtin types the returned pointer will always point
 * to a NULL tp_weaklist.  This is fine for any deallocation cases,
 * since static types are never deallocated and static builtin types
 * are only finalized at the end of runtime finalization.
 *
 * If the weaklist for static types is actually needed then use
 * _PyObject_GET_WEAKREFS_LISTPTR().
 */
static inline PyWeakReference **
_PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(PyObject *op)
{
    assert(!PyType_Check(op) ||
            ((PyTypeObject *)op)->tp_flags & Py_TPFLAGS_HEAPTYPE);
    Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset;
    return (PyWeakReference **)((char *)op + offset);
}


// Fast inlined version of PyObject_IS_GC()
static inline int
_PyObject_IS_GC(PyObject *obj)
{
    return (PyType_IS_GC(Py_TYPE(obj))
            && (Py_TYPE(obj)->tp_is_gc == NULL
                || Py_TYPE(obj)->tp_is_gc(obj)));
}

// Fast inlined version of PyType_IS_GC()
#define _PyType_IS_GC(t) _PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)

static inline size_t
_PyType_PreHeaderSize(PyTypeObject *tp)
{
    return _PyType_IS_GC(tp) * sizeof(PyGC_Head) +
        _PyType_HasFeature(tp, Py_TPFLAGS_PREHEADER) * 2 * sizeof(PyObject *);
}

void _PyObject_GC_Link(PyObject *op);

// Usage: assert(_Py_CheckSlotResult(obj, "__getitem__", result != NULL));
extern int _Py_CheckSlotResult(
    PyObject *obj,
    const char *slot_name,
    int success);

// Test if a type supports weak references
static inline int _PyType_SUPPORTS_WEAKREFS(PyTypeObject *type) {
    return (type->tp_weaklistoffset != 0);
}

extern PyObject* _PyType_AllocNoTrack(PyTypeObject *type, Py_ssize_t nitems);

extern int _PyObject_InitializeDict(PyObject *obj);
extern int _PyObject_StoreInstanceAttribute(PyObject *obj, PyDictValues *values,
                                          PyObject *name, PyObject *value);
PyObject * _PyObject_GetInstanceAttribute(PyObject *obj, PyDictValues *values,
                                        PyObject *name);

typedef union {
    PyObject *dict;
    /* Use a char* to generate a warning if directly assigning a PyDictValues */
    char *values;
} PyDictOrValues;

static inline PyDictOrValues *
_PyObject_DictOrValuesPointer(PyObject *obj)
{
    assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
    return ((PyDictOrValues *)obj)-3;
}

static inline int
_PyDictOrValues_IsValues(PyDictOrValues dorv)
{
    return ((uintptr_t)dorv.values) & 1;
}

static inline PyDictValues *
_PyDictOrValues_GetValues(PyDictOrValues dorv)
{
    assert(_PyDictOrValues_IsValues(dorv));
    return (PyDictValues *)(dorv.values + 1);
}

static inline PyObject *
_PyDictOrValues_GetDict(PyDictOrValues dorv)
{
    assert(!_PyDictOrValues_IsValues(dorv));
    return dorv.dict;
}

static inline void
_PyDictOrValues_SetValues(PyDictOrValues *ptr, PyDictValues *values)
{
    ptr->values = ((char *)values) - 1;
}

#define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-4)

extern PyObject ** _PyObject_ComputedDictPointer(PyObject *);
extern void _PyObject_FreeInstanceAttributes(PyObject *obj);
extern int _PyObject_IsInstanceDictEmpty(PyObject *);

PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, PyObject *);

/* C function call trampolines to mitigate bad function pointer casts.
 *
 * Typical native ABIs ignore additional arguments or fill in missing
 * values with 0/NULL in function pointer cast. Compilers do not show
 * warnings when a function pointer is explicitly casted to an
 * incompatible type.
 *
 * Bad fpcasts are an issue in WebAssembly. WASM's indirect_call has strict
 * function signature checks. Argument count, types, and return type must
 * match.
 *
 * Third party code unintentionally rely on problematic fpcasts. The call
 * trampoline mitigates common occurrences of bad fpcasts on Emscripten.
 */
#if defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE)
#define _PyCFunction_TrampolineCall(meth, self, args) \
    _PyCFunctionWithKeywords_TrampolineCall( \
        (*(PyCFunctionWithKeywords)(void(*)(void))(meth)), (self), (args), NULL)
extern PyObject* _PyCFunctionWithKeywords_TrampolineCall(
    PyCFunctionWithKeywords meth, PyObject *, PyObject *, PyObject *);
#else
#define _PyCFunction_TrampolineCall(meth, self, args) \
    (meth)((self), (args))
#define _PyCFunctionWithKeywords_TrampolineCall(meth, self, args, kw) \
    (meth)((self), (args), (kw))
#endif // __EMSCRIPTEN__ && PY_CALL_TRAMPOLINE

#ifdef __cplusplus
}
#endif
#endif /* !Py_INTERNAL_OBJECT_H */
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!