Current File : //proc/self/root/usr/src/linux-headers-6.8.0-60-generic/arch/arm/include/asm/uaccess.h
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *  arch/arm/include/asm/uaccess.h
 */
#ifndef _ASMARM_UACCESS_H
#define _ASMARM_UACCESS_H

/*
 * User space memory access functions
 */
#include <linux/kernel.h>
#include <linux/string.h>
#include <asm/page.h>
#include <asm/domain.h>
#include <asm/unaligned.h>
#include <asm/unified.h>
#include <asm/compiler.h>

#include <asm/extable.h>

/*
 * These two functions allow hooking accesses to userspace to increase
 * system integrity by ensuring that the kernel can not inadvertantly
 * perform such accesses (eg, via list poison values) which could then
 * be exploited for priviledge escalation.
 */
static __always_inline unsigned int uaccess_save_and_enable(void)
{
#ifdef CONFIG_CPU_SW_DOMAIN_PAN
	unsigned int old_domain = get_domain();

	/* Set the current domain access to permit user accesses */
	set_domain((old_domain & ~domain_mask(DOMAIN_USER)) |
		   domain_val(DOMAIN_USER, DOMAIN_CLIENT));

	return old_domain;
#else
	return 0;
#endif
}

static __always_inline void uaccess_restore(unsigned int flags)
{
#ifdef CONFIG_CPU_SW_DOMAIN_PAN
	/* Restore the user access mask */
	set_domain(flags);
#endif
}

/*
 * These two are intentionally not defined anywhere - if the kernel
 * code generates any references to them, that's a bug.
 */
extern int __get_user_bad(void);
extern int __put_user_bad(void);

#ifdef CONFIG_MMU

/*
 * This is a type: either unsigned long, if the argument fits into
 * that type, or otherwise unsigned long long.
 */
#define __inttype(x) \
	__typeof__(__builtin_choose_expr(sizeof(x) > sizeof(0UL), 0ULL, 0UL))

/*
 * Sanitise a uaccess pointer such that it becomes NULL if addr+size
 * is above the current addr_limit.
 */
#define uaccess_mask_range_ptr(ptr, size)			\
	((__typeof__(ptr))__uaccess_mask_range_ptr(ptr, size))
static inline void __user *__uaccess_mask_range_ptr(const void __user *ptr,
						    size_t size)
{
	void __user *safe_ptr = (void __user *)ptr;
	unsigned long tmp;

	asm volatile(
	"	.syntax unified\n"
	"	sub	%1, %3, #1\n"
	"	subs	%1, %1, %0\n"
	"	addhs	%1, %1, #1\n"
	"	subshs	%1, %1, %2\n"
	"	movlo	%0, #0\n"
	: "+r" (safe_ptr), "=&r" (tmp)
	: "r" (size), "r" (TASK_SIZE)
	: "cc");

	csdb();
	return safe_ptr;
}

/*
 * Single-value transfer routines.  They automatically use the right
 * size if we just have the right pointer type.  Note that the functions
 * which read from user space (*get_*) need to take care not to leak
 * kernel data even if the calling code is buggy and fails to check
 * the return value.  This means zeroing out the destination variable
 * or buffer on error.  Normally this is done out of line by the
 * fixup code, but there are a few places where it intrudes on the
 * main code path.  When we only write to user space, there is no
 * problem.
 */
extern int __get_user_1(void *);
extern int __get_user_2(void *);
extern int __get_user_4(void *);
extern int __get_user_32t_8(void *);
extern int __get_user_8(void *);
extern int __get_user_64t_1(void *);
extern int __get_user_64t_2(void *);
extern int __get_user_64t_4(void *);

#define __get_user_x(__r2, __p, __e, __l, __s)				\
	   __asm__ __volatile__ (					\
		__asmeq("%0", "r0") __asmeq("%1", "r2")			\
		__asmeq("%3", "r1")					\
		"bl	__get_user_" #__s				\
		: "=&r" (__e), "=r" (__r2)				\
		: "0" (__p), "r" (__l)					\
		: "ip", "lr", "cc")

/* narrowing a double-word get into a single 32bit word register: */
#ifdef __ARMEB__
#define __get_user_x_32t(__r2, __p, __e, __l, __s)			\
	__get_user_x(__r2, __p, __e, __l, 32t_8)
#else
#define __get_user_x_32t __get_user_x
#endif

/*
 * storing result into proper least significant word of 64bit target var,
 * different only for big endian case where 64 bit __r2 lsw is r3:
 */
#ifdef __ARMEB__
#define __get_user_x_64t(__r2, __p, __e, __l, __s)		        \
	   __asm__ __volatile__ (					\
		__asmeq("%0", "r0") __asmeq("%1", "r2")			\
		__asmeq("%3", "r1")					\
		"bl	__get_user_64t_" #__s				\
		: "=&r" (__e), "=r" (__r2)				\
		: "0" (__p), "r" (__l)					\
		: "ip", "lr", "cc")
#else
#define __get_user_x_64t __get_user_x
#endif


#define __get_user_check(x, p)						\
	({								\
		unsigned long __limit = TASK_SIZE - 1; \
		register typeof(*(p)) __user *__p asm("r0") = (p);	\
		register __inttype(x) __r2 asm("r2");			\
		register unsigned long __l asm("r1") = __limit;		\
		register int __e asm("r0");				\
		unsigned int __ua_flags = uaccess_save_and_enable();	\
		int __tmp_e;						\
		switch (sizeof(*(__p))) {				\
		case 1:							\
			if (sizeof((x)) >= 8)				\
				__get_user_x_64t(__r2, __p, __e, __l, 1); \
			else						\
				__get_user_x(__r2, __p, __e, __l, 1);	\
			break;						\
		case 2:							\
			if (sizeof((x)) >= 8)				\
				__get_user_x_64t(__r2, __p, __e, __l, 2); \
			else						\
				__get_user_x(__r2, __p, __e, __l, 2);	\
			break;						\
		case 4:							\
			if (sizeof((x)) >= 8)				\
				__get_user_x_64t(__r2, __p, __e, __l, 4); \
			else						\
				__get_user_x(__r2, __p, __e, __l, 4);	\
			break;						\
		case 8:							\
			if (sizeof((x)) < 8)				\
				__get_user_x_32t(__r2, __p, __e, __l, 4); \
			else						\
				__get_user_x(__r2, __p, __e, __l, 8);	\
			break;						\
		default: __e = __get_user_bad(); break;			\
		}							\
		__tmp_e = __e;						\
		uaccess_restore(__ua_flags);				\
		x = (typeof(*(p))) __r2;				\
		__tmp_e;						\
	})

#define get_user(x, p)							\
	({								\
		might_fault();						\
		__get_user_check(x, p);					\
	 })

extern int __put_user_1(void *, unsigned int);
extern int __put_user_2(void *, unsigned int);
extern int __put_user_4(void *, unsigned int);
extern int __put_user_8(void *, unsigned long long);

#define __put_user_check(__pu_val, __ptr, __err, __s)			\
	({								\
		unsigned long __limit = TASK_SIZE - 1; \
		register typeof(__pu_val) __r2 asm("r2") = __pu_val;	\
		register const void __user *__p asm("r0") = __ptr;	\
		register unsigned long __l asm("r1") = __limit;		\
		register int __e asm("r0");				\
		__asm__ __volatile__ (					\
			__asmeq("%0", "r0") __asmeq("%2", "r2")		\
			__asmeq("%3", "r1")				\
			"bl	__put_user_" #__s			\
			: "=&r" (__e)					\
			: "0" (__p), "r" (__r2), "r" (__l)		\
			: "ip", "lr", "cc");				\
		__err = __e;						\
	})

#else /* CONFIG_MMU */

#define get_user(x, p)	__get_user(x, p)
#define __put_user_check __put_user_nocheck

#endif /* CONFIG_MMU */

#include <asm-generic/access_ok.h>

#ifdef CONFIG_CPU_SPECTRE
/*
 * When mitigating Spectre variant 1, it is not worth fixing the non-
 * verifying accessors, because we need to add verification of the
 * address space there.  Force these to use the standard get_user()
 * version instead.
 */
#define __get_user(x, ptr) get_user(x, ptr)
#else

/*
 * The "__xxx" versions of the user access functions do not verify the
 * address space - it must have been done previously with a separate
 * "access_ok()" call.
 *
 * The "xxx_error" versions set the third argument to EFAULT if an
 * error occurs, and leave it unchanged on success.  Note that these
 * versions are void (ie, don't return a value as such).
 */
#define __get_user(x, ptr)						\
({									\
	long __gu_err = 0;						\
	__get_user_err((x), (ptr), __gu_err, TUSER());			\
	__gu_err;							\
})

#define __get_user_err(x, ptr, err, __t)				\
do {									\
	unsigned long __gu_addr = (unsigned long)(ptr);			\
	unsigned long __gu_val;						\
	unsigned int __ua_flags;					\
	__chk_user_ptr(ptr);						\
	might_fault();							\
	__ua_flags = uaccess_save_and_enable();				\
	switch (sizeof(*(ptr))) {					\
	case 1:	__get_user_asm_byte(__gu_val, __gu_addr, err, __t); break;	\
	case 2:	__get_user_asm_half(__gu_val, __gu_addr, err, __t); break;	\
	case 4:	__get_user_asm_word(__gu_val, __gu_addr, err, __t); break;	\
	default: (__gu_val) = __get_user_bad();				\
	}								\
	uaccess_restore(__ua_flags);					\
	(x) = (__typeof__(*(ptr)))__gu_val;				\
} while (0)
#endif

#define __get_user_asm(x, addr, err, instr)			\
	__asm__ __volatile__(					\
	"1:	" instr " %1, [%2], #0\n"			\
	"2:\n"							\
	"	.pushsection .text.fixup,\"ax\"\n"		\
	"	.align	2\n"					\
	"3:	mov	%0, %3\n"				\
	"	mov	%1, #0\n"				\
	"	b	2b\n"					\
	"	.popsection\n"					\
	"	.pushsection __ex_table,\"a\"\n"		\
	"	.align	3\n"					\
	"	.long	1b, 3b\n"				\
	"	.popsection"					\
	: "+r" (err), "=&r" (x)					\
	: "r" (addr), "i" (-EFAULT)				\
	: "cc")

#define __get_user_asm_byte(x, addr, err, __t)			\
	__get_user_asm(x, addr, err, "ldrb" __t)

#if __LINUX_ARM_ARCH__ >= 6

#define __get_user_asm_half(x, addr, err, __t)			\
	__get_user_asm(x, addr, err, "ldrh" __t)

#else

#ifndef __ARMEB__
#define __get_user_asm_half(x, __gu_addr, err, __t)		\
({								\
	unsigned long __b1, __b2;				\
	__get_user_asm_byte(__b1, __gu_addr, err, __t);		\
	__get_user_asm_byte(__b2, __gu_addr + 1, err, __t);	\
	(x) = __b1 | (__b2 << 8);				\
})
#else
#define __get_user_asm_half(x, __gu_addr, err, __t)		\
({								\
	unsigned long __b1, __b2;				\
	__get_user_asm_byte(__b1, __gu_addr, err, __t);		\
	__get_user_asm_byte(__b2, __gu_addr + 1, err, __t);	\
	(x) = (__b1 << 8) | __b2;				\
})
#endif

#endif /* __LINUX_ARM_ARCH__ >= 6 */

#define __get_user_asm_word(x, addr, err, __t)			\
	__get_user_asm(x, addr, err, "ldr" __t)

#define __put_user_switch(x, ptr, __err, __fn)				\
	do {								\
		const __typeof__(*(ptr)) __user *__pu_ptr = (ptr);	\
		__typeof__(*(ptr)) __pu_val = (x);			\
		unsigned int __ua_flags;				\
		might_fault();						\
		__ua_flags = uaccess_save_and_enable();			\
		switch (sizeof(*(ptr))) {				\
		case 1: __fn(__pu_val, __pu_ptr, __err, 1); break;	\
		case 2:	__fn(__pu_val, __pu_ptr, __err, 2); break;	\
		case 4:	__fn(__pu_val, __pu_ptr, __err, 4); break;	\
		case 8:	__fn(__pu_val, __pu_ptr, __err, 8); break;	\
		default: __err = __put_user_bad(); break;		\
		}							\
		uaccess_restore(__ua_flags);				\
	} while (0)

#define put_user(x, ptr)						\
({									\
	int __pu_err = 0;						\
	__put_user_switch((x), (ptr), __pu_err, __put_user_check);	\
	__pu_err;							\
})

#ifdef CONFIG_CPU_SPECTRE
/*
 * When mitigating Spectre variant 1.1, all accessors need to include
 * verification of the address space.
 */
#define __put_user(x, ptr) put_user(x, ptr)

#else
#define __put_user(x, ptr)						\
({									\
	long __pu_err = 0;						\
	__put_user_switch((x), (ptr), __pu_err, __put_user_nocheck);	\
	__pu_err;							\
})

#define __put_user_nocheck(x, __pu_ptr, __err, __size)			\
	do {								\
		unsigned long __pu_addr = (unsigned long)__pu_ptr;	\
		__put_user_nocheck_##__size(x, __pu_addr, __err, TUSER());\
	} while (0)

#define __put_user_nocheck_1 __put_user_asm_byte
#define __put_user_nocheck_2 __put_user_asm_half
#define __put_user_nocheck_4 __put_user_asm_word
#define __put_user_nocheck_8 __put_user_asm_dword

#endif /* !CONFIG_CPU_SPECTRE */

#define __put_user_asm(x, __pu_addr, err, instr)		\
	__asm__ __volatile__(					\
	"1:	" instr " %1, [%2], #0\n"		\
	"2:\n"							\
	"	.pushsection .text.fixup,\"ax\"\n"		\
	"	.align	2\n"					\
	"3:	mov	%0, %3\n"				\
	"	b	2b\n"					\
	"	.popsection\n"					\
	"	.pushsection __ex_table,\"a\"\n"		\
	"	.align	3\n"					\
	"	.long	1b, 3b\n"				\
	"	.popsection"					\
	: "+r" (err)						\
	: "r" (x), "r" (__pu_addr), "i" (-EFAULT)		\
	: "cc")

#define __put_user_asm_byte(x, __pu_addr, err, __t)		\
	__put_user_asm(x, __pu_addr, err, "strb" __t)

#if __LINUX_ARM_ARCH__ >= 6

#define __put_user_asm_half(x, __pu_addr, err, __t)		\
	__put_user_asm(x, __pu_addr, err, "strh" __t)

#else

#ifndef __ARMEB__
#define __put_user_asm_half(x, __pu_addr, err, __t)		\
({								\
	unsigned long __temp = (__force unsigned long)(x);	\
	__put_user_asm_byte(__temp, __pu_addr, err, __t);	\
	__put_user_asm_byte(__temp >> 8, __pu_addr + 1, err, __t);\
})
#else
#define __put_user_asm_half(x, __pu_addr, err, __t)		\
({								\
	unsigned long __temp = (__force unsigned long)(x);	\
	__put_user_asm_byte(__temp >> 8, __pu_addr, err, __t);	\
	__put_user_asm_byte(__temp, __pu_addr + 1, err, __t);	\
})
#endif

#endif /* __LINUX_ARM_ARCH__ >= 6 */

#define __put_user_asm_word(x, __pu_addr, err, __t)		\
	__put_user_asm(x, __pu_addr, err, "str" __t)

#ifndef __ARMEB__
#define	__reg_oper0	"%R2"
#define	__reg_oper1	"%Q2"
#else
#define	__reg_oper0	"%Q2"
#define	__reg_oper1	"%R2"
#endif

#define __put_user_asm_dword(x, __pu_addr, err, __t)		\
	__asm__ __volatile__(					\
 ARM(	"1:	str" __t "	" __reg_oper1 ", [%1], #4\n"  ) \
 ARM(	"2:	str" __t "	" __reg_oper0 ", [%1]\n"      ) \
 THUMB(	"1:	str" __t "	" __reg_oper1 ", [%1]\n"      ) \
 THUMB(	"2:	str" __t "	" __reg_oper0 ", [%1, #4]\n"  ) \
	"3:\n"							\
	"	.pushsection .text.fixup,\"ax\"\n"		\
	"	.align	2\n"					\
	"4:	mov	%0, %3\n"				\
	"	b	3b\n"					\
	"	.popsection\n"					\
	"	.pushsection __ex_table,\"a\"\n"		\
	"	.align	3\n"					\
	"	.long	1b, 4b\n"				\
	"	.long	2b, 4b\n"				\
	"	.popsection"					\
	: "+r" (err), "+r" (__pu_addr)				\
	: "r" (x), "i" (-EFAULT)				\
	: "cc")

#define __get_kernel_nofault(dst, src, type, err_label)			\
do {									\
	const type *__pk_ptr = (src);					\
	unsigned long __src = (unsigned long)(__pk_ptr);		\
	type __val;							\
	int __err = 0;							\
	switch (sizeof(type)) {						\
	case 1:	__get_user_asm_byte(__val, __src, __err, ""); break;	\
	case 2: __get_user_asm_half(__val, __src, __err, ""); break;	\
	case 4: __get_user_asm_word(__val, __src, __err, ""); break;	\
	case 8: {							\
		u32 *__v32 = (u32*)&__val;				\
		__get_user_asm_word(__v32[0], __src, __err, "");	\
		if (__err)						\
			break;						\
		__get_user_asm_word(__v32[1], __src+4, __err, "");	\
		break;							\
	}								\
	default: __err = __get_user_bad(); break;			\
	}								\
	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))		\
		put_unaligned(__val, (type *)(dst));			\
	else								\
		*(type *)(dst) = __val; /* aligned by caller */		\
	if (__err)							\
		goto err_label;						\
} while (0)

#define __put_kernel_nofault(dst, src, type, err_label)			\
do {									\
	const type *__pk_ptr = (dst);					\
	unsigned long __dst = (unsigned long)__pk_ptr;			\
	int __err = 0;							\
	type __val = IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)	\
		     ? get_unaligned((type *)(src))			\
		     : *(type *)(src);	/* aligned by caller */		\
	switch (sizeof(type)) {						\
	case 1: __put_user_asm_byte(__val, __dst, __err, ""); break;	\
	case 2:	__put_user_asm_half(__val, __dst, __err, ""); break;	\
	case 4:	__put_user_asm_word(__val, __dst, __err, ""); break;	\
	case 8:	__put_user_asm_dword(__val, __dst, __err, ""); break;	\
	default: __err = __put_user_bad(); break;			\
	}								\
	if (__err)							\
		goto err_label;						\
} while (0)

#ifdef CONFIG_MMU
extern unsigned long __must_check
arm_copy_from_user(void *to, const void __user *from, unsigned long n);

static inline unsigned long __must_check
raw_copy_from_user(void *to, const void __user *from, unsigned long n)
{
	unsigned int __ua_flags;

	__ua_flags = uaccess_save_and_enable();
	n = arm_copy_from_user(to, from, n);
	uaccess_restore(__ua_flags);
	return n;
}

extern unsigned long __must_check
arm_copy_to_user(void __user *to, const void *from, unsigned long n);
extern unsigned long __must_check
__copy_to_user_std(void __user *to, const void *from, unsigned long n);

static inline unsigned long __must_check
raw_copy_to_user(void __user *to, const void *from, unsigned long n)
{
#ifndef CONFIG_UACCESS_WITH_MEMCPY
	unsigned int __ua_flags;
	__ua_flags = uaccess_save_and_enable();
	n = arm_copy_to_user(to, from, n);
	uaccess_restore(__ua_flags);
	return n;
#else
	return arm_copy_to_user(to, from, n);
#endif
}

extern unsigned long __must_check
arm_clear_user(void __user *addr, unsigned long n);
extern unsigned long __must_check
__clear_user_std(void __user *addr, unsigned long n);

static inline unsigned long __must_check
__clear_user(void __user *addr, unsigned long n)
{
	unsigned int __ua_flags = uaccess_save_and_enable();
	n = arm_clear_user(addr, n);
	uaccess_restore(__ua_flags);
	return n;
}

#else
static inline unsigned long
raw_copy_from_user(void *to, const void __user *from, unsigned long n)
{
	memcpy(to, (const void __force *)from, n);
	return 0;
}
static inline unsigned long
raw_copy_to_user(void __user *to, const void *from, unsigned long n)
{
	memcpy((void __force *)to, from, n);
	return 0;
}
#define __clear_user(addr, n)		(memset((void __force *)addr, 0, n), 0)
#endif
#define INLINE_COPY_TO_USER
#define INLINE_COPY_FROM_USER

static inline unsigned long __must_check clear_user(void __user *to, unsigned long n)
{
	if (access_ok(to, n))
		n = __clear_user(to, n);
	return n;
}

/* These are from lib/ code, and use __get_user() and friends */
extern long strncpy_from_user(char *dest, const char __user *src, long count);

extern __must_check long strnlen_user(const char __user *str, long n);

#endif /* _ASMARM_UACCESS_H */
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!