Current File : //proc/self/root/usr/src/linux-headers-6.8.0-59/arch/x86/crypto/poly1305-x86_64-cryptogams.pl
#!/usr/bin/env perl
# SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
#
# Copyright (C) 2017-2018 Samuel Neves <sneves@dei.uc.pt>. All Rights Reserved.
# Copyright (C) 2017-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
# Copyright (C) 2006-2017 CRYPTOGAMS by <appro@openssl.org>. All Rights Reserved.
#
# This code is taken from the OpenSSL project but the author, Andy Polyakov,
# has relicensed it under the licenses specified in the SPDX header above.
# The original headers, including the original license headers, are
# included below for completeness.
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# This module implements Poly1305 hash for x86_64.
#
# March 2015
#
# Initial release.
#
# December 2016
#
# Add AVX512F+VL+BW code path.
#
# November 2017
#
# Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be
# executed even on Knights Landing. Trigger for modification was
# observation that AVX512 code paths can negatively affect overall
# Skylake-X system performance. Since we are likely to suppress
# AVX512F capability flag [at least on Skylake-X], conversion serves
# as kind of "investment protection". Note that next *lake processor,
# Cannonlake, has AVX512IFMA code path to execute...
#
# Numbers are cycles per processed byte with poly1305_blocks alone,
# measured with rdtsc at fixed clock frequency.
#
#		IALU/gcc-4.8(*)	AVX(**)		AVX2	AVX-512
# P4		4.46/+120%	-
# Core 2	2.41/+90%	-
# Westmere	1.88/+120%	-
# Sandy Bridge	1.39/+140%	1.10
# Haswell	1.14/+175%	1.11		0.65
# Skylake[-X]	1.13/+120%	0.96		0.51	[0.35]
# Silvermont	2.83/+95%	-
# Knights L	3.60/?		1.65		1.10	0.41(***)
# Goldmont	1.70/+180%	-
# VIA Nano	1.82/+150%	-
# Sledgehammer	1.38/+160%	-
# Bulldozer	2.30/+130%	0.97
# Ryzen		1.15/+200%	1.08		1.18
#
# (*)	improvement coefficients relative to clang are more modest and
#	are ~50% on most processors, in both cases we are comparing to
#	__int128 code;
# (**)	SSE2 implementation was attempted, but among non-AVX processors
#	it was faster than integer-only code only on older Intel P4 and
#	Core processors, 50-30%, less newer processor is, but slower on
#	contemporary ones, for example almost 2x slower on Atom, and as
#	former are naturally disappearing, SSE2 is deemed unnecessary;
# (***)	strangely enough performance seems to vary from core to core,
#	listed result is best case;

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$kernel=0; $kernel=1 if (!$flavour && !$output);

if (!$kernel) {
	$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
	( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
	( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
	die "can't locate x86_64-xlate.pl";

	open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
	*STDOUT=*OUT;

	if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
	    =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
		$avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25);
	}

	if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
	    `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
		$avx = ($1>=2.09) + ($1>=2.10) + ($1>=2.12);
		$avx += 1 if ($1==2.11 && $2>=8);
	}

	if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
	    `ml64 2>&1` =~ /Version ([0-9]+)\./) {
		$avx = ($1>=10) + ($1>=11);
	}

	if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9]\.[0-9]+)/) {
		$avx = ($2>=3.0) + ($2>3.0);
	}
} else {
	$avx = 4; # The kernel uses ifdefs for this.
}

sub declare_function() {
	my ($name, $align, $nargs) = @_;
	if($kernel) {
		$code .= "SYM_FUNC_START($name)\n";
		$code .= ".L$name:\n";
	} else {
		$code .= ".globl	$name\n";
		$code .= ".type	$name,\@function,$nargs\n";
		$code .= ".align	$align\n";
		$code .= "$name:\n";
	}
}

sub end_function() {
	my ($name) = @_;
	if($kernel) {
		$code .= "SYM_FUNC_END($name)\n";
	} else {
		$code .= ".size   $name,.-$name\n";
	}
}

$code.=<<___ if $kernel;
#include <linux/linkage.h>
___

if ($avx) {
$code.=<<___ if $kernel;
.section .rodata
___
$code.=<<___;
.align	64
.Lconst:
.Lmask24:
.long	0x0ffffff,0,0x0ffffff,0,0x0ffffff,0,0x0ffffff,0
.L129:
.long	`1<<24`,0,`1<<24`,0,`1<<24`,0,`1<<24`,0
.Lmask26:
.long	0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0
.Lpermd_avx2:
.long	2,2,2,3,2,0,2,1
.Lpermd_avx512:
.long	0,0,0,1, 0,2,0,3, 0,4,0,5, 0,6,0,7

.L2_44_inp_permd:
.long	0,1,1,2,2,3,7,7
.L2_44_inp_shift:
.quad	0,12,24,64
.L2_44_mask:
.quad	0xfffffffffff,0xfffffffffff,0x3ffffffffff,0xffffffffffffffff
.L2_44_shift_rgt:
.quad	44,44,42,64
.L2_44_shift_lft:
.quad	8,8,10,64

.align	64
.Lx_mask44:
.quad	0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff
.quad	0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff
.Lx_mask42:
.quad	0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff
.quad	0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff
___
}
$code.=<<___ if (!$kernel);
.asciz	"Poly1305 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align	16
___

my ($ctx,$inp,$len,$padbit)=("%rdi","%rsi","%rdx","%rcx");
my ($mac,$nonce)=($inp,$len);	# *_emit arguments
my ($d1,$d2,$d3, $r0,$r1,$s1)=("%r8","%r9","%rdi","%r11","%r12","%r13");
my ($h0,$h1,$h2)=("%r14","%rbx","%r10");

sub poly1305_iteration {
# input:	copy of $r1 in %rax, $h0-$h2, $r0-$r1
# output:	$h0-$h2 *= $r0-$r1
$code.=<<___;
	mulq	$h0			# h0*r1
	mov	%rax,$d2
	 mov	$r0,%rax
	mov	%rdx,$d3

	mulq	$h0			# h0*r0
	mov	%rax,$h0		# future $h0
	 mov	$r0,%rax
	mov	%rdx,$d1

	mulq	$h1			# h1*r0
	add	%rax,$d2
	 mov	$s1,%rax
	adc	%rdx,$d3

	mulq	$h1			# h1*s1
	 mov	$h2,$h1			# borrow $h1
	add	%rax,$h0
	adc	%rdx,$d1

	imulq	$s1,$h1			# h2*s1
	add	$h1,$d2
	 mov	$d1,$h1
	adc	\$0,$d3

	imulq	$r0,$h2			# h2*r0
	add	$d2,$h1
	mov	\$-4,%rax		# mask value
	adc	$h2,$d3

	and	$d3,%rax		# last reduction step
	mov	$d3,$h2
	shr	\$2,$d3
	and	\$3,$h2
	add	$d3,%rax
	add	%rax,$h0
	adc	\$0,$h1
	adc	\$0,$h2
___
}

########################################################################
# Layout of opaque area is following.
#
#	unsigned __int64 h[3];		# current hash value base 2^64
#	unsigned __int64 r[2];		# key value base 2^64

$code.=<<___;
.text
___
$code.=<<___ if (!$kernel);
.extern	OPENSSL_ia32cap_P

.globl	poly1305_init_x86_64
.hidden	poly1305_init_x86_64
.globl	poly1305_blocks_x86_64
.hidden	poly1305_blocks_x86_64
.globl	poly1305_emit_x86_64
.hidden	poly1305_emit_x86_64
___
&declare_function("poly1305_init_x86_64", 32, 3);
$code.=<<___;
	xor	%eax,%eax
	mov	%rax,0($ctx)		# initialize hash value
	mov	%rax,8($ctx)
	mov	%rax,16($ctx)

	test	$inp,$inp
	je	.Lno_key
___
$code.=<<___ if (!$kernel);
	lea	poly1305_blocks_x86_64(%rip),%r10
	lea	poly1305_emit_x86_64(%rip),%r11
___
$code.=<<___	if (!$kernel && $avx);
	mov	OPENSSL_ia32cap_P+4(%rip),%r9
	lea	poly1305_blocks_avx(%rip),%rax
	lea	poly1305_emit_avx(%rip),%rcx
	bt	\$`60-32`,%r9		# AVX?
	cmovc	%rax,%r10
	cmovc	%rcx,%r11
___
$code.=<<___	if (!$kernel && $avx>1);
	lea	poly1305_blocks_avx2(%rip),%rax
	bt	\$`5+32`,%r9		# AVX2?
	cmovc	%rax,%r10
___
$code.=<<___	if (!$kernel && $avx>3);
	mov	\$`(1<<31|1<<21|1<<16)`,%rax
	shr	\$32,%r9
	and	%rax,%r9
	cmp	%rax,%r9
	je	.Linit_base2_44
___
$code.=<<___;
	mov	\$0x0ffffffc0fffffff,%rax
	mov	\$0x0ffffffc0ffffffc,%rcx
	and	0($inp),%rax
	and	8($inp),%rcx
	mov	%rax,24($ctx)
	mov	%rcx,32($ctx)
___
$code.=<<___	if (!$kernel && $flavour !~ /elf32/);
	mov	%r10,0(%rdx)
	mov	%r11,8(%rdx)
___
$code.=<<___	if (!$kernel && $flavour =~ /elf32/);
	mov	%r10d,0(%rdx)
	mov	%r11d,4(%rdx)
___
$code.=<<___;
	mov	\$1,%eax
.Lno_key:
	RET
___
&end_function("poly1305_init_x86_64");

&declare_function("poly1305_blocks_x86_64", 32, 4);
$code.=<<___;
.cfi_startproc
.Lblocks:
	shr	\$4,$len
	jz	.Lno_data		# too short

	push	%rbx
.cfi_push	%rbx
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
	push	$ctx
.cfi_push	$ctx
.Lblocks_body:

	mov	$len,%r15		# reassign $len

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	mov	0($ctx),$h0		# load hash value
	mov	8($ctx),$h1
	mov	16($ctx),$h2

	mov	$s1,$r1
	shr	\$2,$s1
	mov	$r1,%rax
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)
	jmp	.Loop

.align	32
.Loop:
	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
___

	&poly1305_iteration();

$code.=<<___;
	mov	$r1,%rax
	dec	%r15			# len-=16
	jnz	.Loop

	mov	0(%rsp),$ctx
.cfi_restore	$ctx

	mov	$h0,0($ctx)		# store hash value
	mov	$h1,8($ctx)
	mov	$h2,16($ctx)

	mov	8(%rsp),%r15
.cfi_restore	%r15
	mov	16(%rsp),%r14
.cfi_restore	%r14
	mov	24(%rsp),%r13
.cfi_restore	%r13
	mov	32(%rsp),%r12
.cfi_restore	%r12
	mov	40(%rsp),%rbx
.cfi_restore	%rbx
	lea	48(%rsp),%rsp
.cfi_adjust_cfa_offset	-48
.Lno_data:
.Lblocks_epilogue:
	RET
.cfi_endproc
___
&end_function("poly1305_blocks_x86_64");

&declare_function("poly1305_emit_x86_64", 32, 3);
$code.=<<___;
.Lemit:
	mov	0($ctx),%r8	# load hash value
	mov	8($ctx),%r9
	mov	16($ctx),%r10

	mov	%r8,%rax
	add	\$5,%r8		# compare to modulus
	mov	%r9,%rcx
	adc	\$0,%r9
	adc	\$0,%r10
	shr	\$2,%r10	# did 130-bit value overflow?
	cmovnz	%r8,%rax
	cmovnz	%r9,%rcx

	add	0($nonce),%rax	# accumulate nonce
	adc	8($nonce),%rcx
	mov	%rax,0($mac)	# write result
	mov	%rcx,8($mac)

	RET
___
&end_function("poly1305_emit_x86_64");
if ($avx) {

########################################################################
# Layout of opaque area is following.
#
#	unsigned __int32 h[5];		# current hash value base 2^26
#	unsigned __int32 is_base2_26;
#	unsigned __int64 r[2];		# key value base 2^64
#	unsigned __int64 pad;
#	struct { unsigned __int32 r^2, r^1, r^4, r^3; } r[9];
#
# where r^n are base 2^26 digits of degrees of multiplier key. There are
# 5 digits, but last four are interleaved with multiples of 5, totalling
# in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4.

my ($H0,$H1,$H2,$H3,$H4, $T0,$T1,$T2,$T3,$T4, $D0,$D1,$D2,$D3,$D4, $MASK) =
    map("%xmm$_",(0..15));

$code.=<<___;
.type	__poly1305_block,\@abi-omnipotent
.align	32
__poly1305_block:
	push $ctx
___
	&poly1305_iteration();
$code.=<<___;
	pop $ctx
	RET
.size	__poly1305_block,.-__poly1305_block

.type	__poly1305_init_avx,\@abi-omnipotent
.align	32
__poly1305_init_avx:
	push %rbp
	mov %rsp,%rbp
	mov	$r0,$h0
	mov	$r1,$h1
	xor	$h2,$h2

	lea	48+64($ctx),$ctx	# size optimization

	mov	$r1,%rax
	call	__poly1305_block	# r^2

	mov	\$0x3ffffff,%eax	# save interleaved r^2 and r base 2^26
	mov	\$0x3ffffff,%edx
	mov	$h0,$d1
	and	$h0#d,%eax
	mov	$r0,$d2
	and	$r0#d,%edx
	mov	%eax,`16*0+0-64`($ctx)
	shr	\$26,$d1
	mov	%edx,`16*0+4-64`($ctx)
	shr	\$26,$d2

	mov	\$0x3ffffff,%eax
	mov	\$0x3ffffff,%edx
	and	$d1#d,%eax
	and	$d2#d,%edx
	mov	%eax,`16*1+0-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	%edx,`16*1+4-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	mov	%eax,`16*2+0-64`($ctx)
	shr	\$26,$d1
	mov	%edx,`16*2+4-64`($ctx)
	shr	\$26,$d2

	mov	$h1,%rax
	mov	$r1,%rdx
	shl	\$12,%rax
	shl	\$12,%rdx
	or	$d1,%rax
	or	$d2,%rdx
	and	\$0x3ffffff,%eax
	and	\$0x3ffffff,%edx
	mov	%eax,`16*3+0-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	%edx,`16*3+4-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	mov	%eax,`16*4+0-64`($ctx)
	mov	$h1,$d1
	mov	%edx,`16*4+4-64`($ctx)
	mov	$r1,$d2

	mov	\$0x3ffffff,%eax
	mov	\$0x3ffffff,%edx
	shr	\$14,$d1
	shr	\$14,$d2
	and	$d1#d,%eax
	and	$d2#d,%edx
	mov	%eax,`16*5+0-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	%edx,`16*5+4-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	mov	%eax,`16*6+0-64`($ctx)
	shr	\$26,$d1
	mov	%edx,`16*6+4-64`($ctx)
	shr	\$26,$d2

	mov	$h2,%rax
	shl	\$24,%rax
	or	%rax,$d1
	mov	$d1#d,`16*7+0-64`($ctx)
	lea	($d1,$d1,4),$d1		# *5
	mov	$d2#d,`16*7+4-64`($ctx)
	lea	($d2,$d2,4),$d2		# *5
	mov	$d1#d,`16*8+0-64`($ctx)
	mov	$d2#d,`16*8+4-64`($ctx)

	mov	$r1,%rax
	call	__poly1305_block	# r^3

	mov	\$0x3ffffff,%eax	# save r^3 base 2^26
	mov	$h0,$d1
	and	$h0#d,%eax
	shr	\$26,$d1
	mov	%eax,`16*0+12-64`($ctx)

	mov	\$0x3ffffff,%edx
	and	$d1#d,%edx
	mov	%edx,`16*1+12-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*2+12-64`($ctx)

	mov	$h1,%rax
	shl	\$12,%rax
	or	$d1,%rax
	and	\$0x3ffffff,%eax
	mov	%eax,`16*3+12-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	$h1,$d1
	mov	%eax,`16*4+12-64`($ctx)

	mov	\$0x3ffffff,%edx
	shr	\$14,$d1
	and	$d1#d,%edx
	mov	%edx,`16*5+12-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*6+12-64`($ctx)

	mov	$h2,%rax
	shl	\$24,%rax
	or	%rax,$d1
	mov	$d1#d,`16*7+12-64`($ctx)
	lea	($d1,$d1,4),$d1		# *5
	mov	$d1#d,`16*8+12-64`($ctx)

	mov	$r1,%rax
	call	__poly1305_block	# r^4

	mov	\$0x3ffffff,%eax	# save r^4 base 2^26
	mov	$h0,$d1
	and	$h0#d,%eax
	shr	\$26,$d1
	mov	%eax,`16*0+8-64`($ctx)

	mov	\$0x3ffffff,%edx
	and	$d1#d,%edx
	mov	%edx,`16*1+8-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*2+8-64`($ctx)

	mov	$h1,%rax
	shl	\$12,%rax
	or	$d1,%rax
	and	\$0x3ffffff,%eax
	mov	%eax,`16*3+8-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	$h1,$d1
	mov	%eax,`16*4+8-64`($ctx)

	mov	\$0x3ffffff,%edx
	shr	\$14,$d1
	and	$d1#d,%edx
	mov	%edx,`16*5+8-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*6+8-64`($ctx)

	mov	$h2,%rax
	shl	\$24,%rax
	or	%rax,$d1
	mov	$d1#d,`16*7+8-64`($ctx)
	lea	($d1,$d1,4),$d1		# *5
	mov	$d1#d,`16*8+8-64`($ctx)

	lea	-48-64($ctx),$ctx	# size [de-]optimization
	pop %rbp
	RET
.size	__poly1305_init_avx,.-__poly1305_init_avx
___

&declare_function("poly1305_blocks_avx", 32, 4);
$code.=<<___;
.cfi_startproc
	mov	20($ctx),%r8d		# is_base2_26
	cmp	\$128,$len
	jae	.Lblocks_avx
	test	%r8d,%r8d
	jz	.Lblocks

.Lblocks_avx:
	and	\$-16,$len
	jz	.Lno_data_avx

	vzeroupper

	test	%r8d,%r8d
	jz	.Lbase2_64_avx

	test	\$31,$len
	jz	.Leven_avx

	push	%rbp
.cfi_push	%rbp
	mov 	%rsp,%rbp
	push	%rbx
.cfi_push	%rbx
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lblocks_avx_body:

	mov	$len,%r15		# reassign $len

	mov	0($ctx),$d1		# load hash value
	mov	8($ctx),$d2
	mov	16($ctx),$h2#d

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	################################# base 2^26 -> base 2^64
	mov	$d1#d,$h0#d
	and	\$`-1*(1<<31)`,$d1
	mov	$d2,$r1			# borrow $r1
	mov	$d2#d,$h1#d
	and	\$`-1*(1<<31)`,$d2

	shr	\$6,$d1
	shl	\$52,$r1
	add	$d1,$h0
	shr	\$12,$h1
	shr	\$18,$d2
	add	$r1,$h0
	adc	$d2,$h1

	mov	$h2,$d1
	shl	\$40,$d1
	shr	\$24,$h2
	add	$d1,$h1
	adc	\$0,$h2			# can be partially reduced...

	mov	\$-4,$d2		# ... so reduce
	mov	$h2,$d1
	and	$h2,$d2
	shr	\$2,$d1
	and	\$3,$h2
	add	$d2,$d1			# =*5
	add	$d1,$h0
	adc	\$0,$h1
	adc	\$0,$h2

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2

	call	__poly1305_block

	test	$padbit,$padbit		# if $padbit is zero,
	jz	.Lstore_base2_64_avx	# store hash in base 2^64 format

	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$r0
	mov	$h1,$r1
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$r0
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$r0,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$r1
	and	\$0x3ffffff,$h1		# h[3]
	or	$r1,$h2			# h[4]

	sub	\$16,%r15
	jz	.Lstore_base2_26_avx

	vmovd	%rax#d,$H0
	vmovd	%rdx#d,$H1
	vmovd	$h0#d,$H2
	vmovd	$h1#d,$H3
	vmovd	$h2#d,$H4
	jmp	.Lproceed_avx

.align	32
.Lstore_base2_64_avx:
	mov	$h0,0($ctx)
	mov	$h1,8($ctx)
	mov	$h2,16($ctx)		# note that is_base2_26 is zeroed
	jmp	.Ldone_avx

.align	16
.Lstore_base2_26_avx:
	mov	%rax#d,0($ctx)		# store hash value base 2^26
	mov	%rdx#d,4($ctx)
	mov	$h0#d,8($ctx)
	mov	$h1#d,12($ctx)
	mov	$h2#d,16($ctx)
.align	16
.Ldone_avx:
	pop 		%r15
.cfi_restore	%r15
	pop 		%r14
.cfi_restore	%r14
	pop 		%r13
.cfi_restore	%r13
	pop 		%r12
.cfi_restore	%r12
	pop 		%rbx
.cfi_restore	%rbx
	pop 		%rbp
.cfi_restore	%rbp
.Lno_data_avx:
.Lblocks_avx_epilogue:
	RET
.cfi_endproc

.align	32
.Lbase2_64_avx:
.cfi_startproc
	push	%rbp
.cfi_push	%rbp
	mov 	%rsp,%rbp
	push	%rbx
.cfi_push	%rbx
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lbase2_64_avx_body:

	mov	$len,%r15		# reassign $len

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	mov	0($ctx),$h0		# load hash value
	mov	8($ctx),$h1
	mov	16($ctx),$h2#d

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

	test	\$31,$len
	jz	.Linit_avx

	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
	sub	\$16,%r15

	call	__poly1305_block

.Linit_avx:
	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$d1
	mov	$h1,$d2
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$d1
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$d1,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$d2
	and	\$0x3ffffff,$h1		# h[3]
	or	$d2,$h2			# h[4]

	vmovd	%rax#d,$H0
	vmovd	%rdx#d,$H1
	vmovd	$h0#d,$H2
	vmovd	$h1#d,$H3
	vmovd	$h2#d,$H4
	movl	\$1,20($ctx)		# set is_base2_26

	call	__poly1305_init_avx

.Lproceed_avx:
	mov	%r15,$len
	pop 		%r15
.cfi_restore	%r15
	pop 		%r14
.cfi_restore	%r14
	pop 		%r13
.cfi_restore	%r13
	pop 		%r12
.cfi_restore	%r12
	pop 		%rbx
.cfi_restore	%rbx
	pop 		%rbp
.cfi_restore	%rbp
.Lbase2_64_avx_epilogue:
	jmp	.Ldo_avx
.cfi_endproc

.align	32
.Leven_avx:
.cfi_startproc
	vmovd		4*0($ctx),$H0		# load hash value
	vmovd		4*1($ctx),$H1
	vmovd		4*2($ctx),$H2
	vmovd		4*3($ctx),$H3
	vmovd		4*4($ctx),$H4

.Ldo_avx:
___
$code.=<<___	if (!$win64);
	lea		8(%rsp),%r10
.cfi_def_cfa_register	%r10
	and		\$-32,%rsp
	sub		\$-8,%rsp
	lea		-0x58(%rsp),%r11
	sub		\$0x178,%rsp
___
$code.=<<___	if ($win64);
	lea		-0xf8(%rsp),%r11
	sub		\$0x218,%rsp
	vmovdqa		%xmm6,0x50(%r11)
	vmovdqa		%xmm7,0x60(%r11)
	vmovdqa		%xmm8,0x70(%r11)
	vmovdqa		%xmm9,0x80(%r11)
	vmovdqa		%xmm10,0x90(%r11)
	vmovdqa		%xmm11,0xa0(%r11)
	vmovdqa		%xmm12,0xb0(%r11)
	vmovdqa		%xmm13,0xc0(%r11)
	vmovdqa		%xmm14,0xd0(%r11)
	vmovdqa		%xmm15,0xe0(%r11)
.Ldo_avx_body:
___
$code.=<<___;
	sub		\$64,$len
	lea		-32($inp),%rax
	cmovc		%rax,$inp

	vmovdqu		`16*3`($ctx),$D4	# preload r0^2
	lea		`16*3+64`($ctx),$ctx	# size optimization
	lea		.Lconst(%rip),%rcx

	################################################################
	# load input
	vmovdqu		16*2($inp),$T0
	vmovdqu		16*3($inp),$T1
	vmovdqa		64(%rcx),$MASK		# .Lmask26

	vpsrldq		\$6,$T0,$T2		# splat input
	vpsrldq		\$6,$T1,$T3
	vpunpckhqdq	$T1,$T0,$T4		# 4
	vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpunpcklqdq	$T3,$T2,$T3		# 2:3

	vpsrlq		\$40,$T4,$T4		# 4
	vpsrlq		\$26,$T0,$T1
	vpand		$MASK,$T0,$T0		# 0
	vpsrlq		\$4,$T3,$T2
	vpand		$MASK,$T1,$T1		# 1
	vpsrlq		\$30,$T3,$T3
	vpand		$MASK,$T2,$T2		# 2
	vpand		$MASK,$T3,$T3		# 3
	vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	jbe		.Lskip_loop_avx

	# expand and copy pre-calculated table to stack
	vmovdqu		`16*1-64`($ctx),$D1
	vmovdqu		`16*2-64`($ctx),$D2
	vpshufd		\$0xEE,$D4,$D3		# 34xx -> 3434
	vpshufd		\$0x44,$D4,$D0		# xx12 -> 1212
	vmovdqa		$D3,-0x90(%r11)
	vmovdqa		$D0,0x00(%rsp)
	vpshufd		\$0xEE,$D1,$D4
	vmovdqu		`16*3-64`($ctx),$D0
	vpshufd		\$0x44,$D1,$D1
	vmovdqa		$D4,-0x80(%r11)
	vmovdqa		$D1,0x10(%rsp)
	vpshufd		\$0xEE,$D2,$D3
	vmovdqu		`16*4-64`($ctx),$D1
	vpshufd		\$0x44,$D2,$D2
	vmovdqa		$D3,-0x70(%r11)
	vmovdqa		$D2,0x20(%rsp)
	vpshufd		\$0xEE,$D0,$D4
	vmovdqu		`16*5-64`($ctx),$D2
	vpshufd		\$0x44,$D0,$D0
	vmovdqa		$D4,-0x60(%r11)
	vmovdqa		$D0,0x30(%rsp)
	vpshufd		\$0xEE,$D1,$D3
	vmovdqu		`16*6-64`($ctx),$D0
	vpshufd		\$0x44,$D1,$D1
	vmovdqa		$D3,-0x50(%r11)
	vmovdqa		$D1,0x40(%rsp)
	vpshufd		\$0xEE,$D2,$D4
	vmovdqu		`16*7-64`($ctx),$D1
	vpshufd		\$0x44,$D2,$D2
	vmovdqa		$D4,-0x40(%r11)
	vmovdqa		$D2,0x50(%rsp)
	vpshufd		\$0xEE,$D0,$D3
	vmovdqu		`16*8-64`($ctx),$D2
	vpshufd		\$0x44,$D0,$D0
	vmovdqa		$D3,-0x30(%r11)
	vmovdqa		$D0,0x60(%rsp)
	vpshufd		\$0xEE,$D1,$D4
	vpshufd		\$0x44,$D1,$D1
	vmovdqa		$D4,-0x20(%r11)
	vmovdqa		$D1,0x70(%rsp)
	vpshufd		\$0xEE,$D2,$D3
	 vmovdqa	0x00(%rsp),$D4		# preload r0^2
	vpshufd		\$0x44,$D2,$D2
	vmovdqa		$D3,-0x10(%r11)
	vmovdqa		$D2,0x80(%rsp)

	jmp		.Loop_avx

.align	32
.Loop_avx:
	################################################################
	# ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2
	# ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r
	#   \___________________/
	# ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2
	# ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r
	#   \___________________/ \____________________/
	#
	# Note that we start with inp[2:3]*r^2. This is because it
	# doesn't depend on reduction in previous iteration.
	################################################################
	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
	#
	# though note that $Tx and $Hx are "reversed" in this section,
	# and $D4 is preloaded with r0^2...

	vpmuludq	$T0,$D4,$D0		# d0 = h0*r0
	vpmuludq	$T1,$D4,$D1		# d1 = h1*r0
	  vmovdqa	$H2,0x20(%r11)				# offload hash
	vpmuludq	$T2,$D4,$D2		# d3 = h2*r0
	 vmovdqa	0x10(%rsp),$H2		# r1^2
	vpmuludq	$T3,$D4,$D3		# d3 = h3*r0
	vpmuludq	$T4,$D4,$D4		# d4 = h4*r0

	  vmovdqa	$H0,0x00(%r11)				#
	vpmuludq	0x20(%rsp),$T4,$H0	# h4*s1
	  vmovdqa	$H1,0x10(%r11)				#
	vpmuludq	$T3,$H2,$H1		# h3*r1
	vpaddq		$H0,$D0,$D0		# d0 += h4*s1
	vpaddq		$H1,$D4,$D4		# d4 += h3*r1
	  vmovdqa	$H3,0x30(%r11)				#
	vpmuludq	$T2,$H2,$H0		# h2*r1
	vpmuludq	$T1,$H2,$H1		# h1*r1
	vpaddq		$H0,$D3,$D3		# d3 += h2*r1
	 vmovdqa	0x30(%rsp),$H3		# r2^2
	vpaddq		$H1,$D2,$D2		# d2 += h1*r1
	  vmovdqa	$H4,0x40(%r11)				#
	vpmuludq	$T0,$H2,$H2		# h0*r1
	 vpmuludq	$T2,$H3,$H0		# h2*r2
	vpaddq		$H2,$D1,$D1		# d1 += h0*r1

	 vmovdqa	0x40(%rsp),$H4		# s2^2
	vpaddq		$H0,$D4,$D4		# d4 += h2*r2
	vpmuludq	$T1,$H3,$H1		# h1*r2
	vpmuludq	$T0,$H3,$H3		# h0*r2
	vpaddq		$H1,$D3,$D3		# d3 += h1*r2
	 vmovdqa	0x50(%rsp),$H2		# r3^2
	vpaddq		$H3,$D2,$D2		# d2 += h0*r2
	vpmuludq	$T4,$H4,$H0		# h4*s2
	vpmuludq	$T3,$H4,$H4		# h3*s2
	vpaddq		$H0,$D1,$D1		# d1 += h4*s2
	 vmovdqa	0x60(%rsp),$H3		# s3^2
	vpaddq		$H4,$D0,$D0		# d0 += h3*s2

	 vmovdqa	0x80(%rsp),$H4		# s4^2
	vpmuludq	$T1,$H2,$H1		# h1*r3
	vpmuludq	$T0,$H2,$H2		# h0*r3
	vpaddq		$H1,$D4,$D4		# d4 += h1*r3
	vpaddq		$H2,$D3,$D3		# d3 += h0*r3
	vpmuludq	$T4,$H3,$H0		# h4*s3
	vpmuludq	$T3,$H3,$H1		# h3*s3
	vpaddq		$H0,$D2,$D2		# d2 += h4*s3
	 vmovdqu	16*0($inp),$H0				# load input
	vpaddq		$H1,$D1,$D1		# d1 += h3*s3
	vpmuludq	$T2,$H3,$H3		# h2*s3
	 vpmuludq	$T2,$H4,$T2		# h2*s4
	vpaddq		$H3,$D0,$D0		# d0 += h2*s3

	 vmovdqu	16*1($inp),$H1				#
	vpaddq		$T2,$D1,$D1		# d1 += h2*s4
	vpmuludq	$T3,$H4,$T3		# h3*s4
	vpmuludq	$T4,$H4,$T4		# h4*s4
	 vpsrldq	\$6,$H0,$H2				# splat input
	vpaddq		$T3,$D2,$D2		# d2 += h3*s4
	vpaddq		$T4,$D3,$D3		# d3 += h4*s4
	 vpsrldq	\$6,$H1,$H3				#
	vpmuludq	0x70(%rsp),$T0,$T4	# h0*r4
	vpmuludq	$T1,$H4,$T0		# h1*s4
	 vpunpckhqdq	$H1,$H0,$H4		# 4
	vpaddq		$T4,$D4,$D4		# d4 += h0*r4
	 vmovdqa	-0x90(%r11),$T4		# r0^4
	vpaddq		$T0,$D0,$D0		# d0 += h1*s4

	vpunpcklqdq	$H1,$H0,$H0		# 0:1
	vpunpcklqdq	$H3,$H2,$H3		# 2:3

	#vpsrlq		\$40,$H4,$H4		# 4
	vpsrldq		\$`40/8`,$H4,$H4	# 4
	vpsrlq		\$26,$H0,$H1
	vpand		$MASK,$H0,$H0		# 0
	vpsrlq		\$4,$H3,$H2
	vpand		$MASK,$H1,$H1		# 1
	vpand		0(%rcx),$H4,$H4		# .Lmask24
	vpsrlq		\$30,$H3,$H3
	vpand		$MASK,$H2,$H2		# 2
	vpand		$MASK,$H3,$H3		# 3
	vpor		32(%rcx),$H4,$H4	# padbit, yes, always

	vpaddq		0x00(%r11),$H0,$H0	# add hash value
	vpaddq		0x10(%r11),$H1,$H1
	vpaddq		0x20(%r11),$H2,$H2
	vpaddq		0x30(%r11),$H3,$H3
	vpaddq		0x40(%r11),$H4,$H4

	lea		16*2($inp),%rax
	lea		16*4($inp),$inp
	sub		\$64,$len
	cmovc		%rax,$inp

	################################################################
	# Now we accumulate (inp[0:1]+hash)*r^4
	################################################################
	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4

	vpmuludq	$H0,$T4,$T0		# h0*r0
	vpmuludq	$H1,$T4,$T1		# h1*r0
	vpaddq		$T0,$D0,$D0
	vpaddq		$T1,$D1,$D1
	 vmovdqa	-0x80(%r11),$T2		# r1^4
	vpmuludq	$H2,$T4,$T0		# h2*r0
	vpmuludq	$H3,$T4,$T1		# h3*r0
	vpaddq		$T0,$D2,$D2
	vpaddq		$T1,$D3,$D3
	vpmuludq	$H4,$T4,$T4		# h4*r0
	 vpmuludq	-0x70(%r11),$H4,$T0	# h4*s1
	vpaddq		$T4,$D4,$D4

	vpaddq		$T0,$D0,$D0		# d0 += h4*s1
	vpmuludq	$H2,$T2,$T1		# h2*r1
	vpmuludq	$H3,$T2,$T0		# h3*r1
	vpaddq		$T1,$D3,$D3		# d3 += h2*r1
	 vmovdqa	-0x60(%r11),$T3		# r2^4
	vpaddq		$T0,$D4,$D4		# d4 += h3*r1
	vpmuludq	$H1,$T2,$T1		# h1*r1
	vpmuludq	$H0,$T2,$T2		# h0*r1
	vpaddq		$T1,$D2,$D2		# d2 += h1*r1
	vpaddq		$T2,$D1,$D1		# d1 += h0*r1

	 vmovdqa	-0x50(%r11),$T4		# s2^4
	vpmuludq	$H2,$T3,$T0		# h2*r2
	vpmuludq	$H1,$T3,$T1		# h1*r2
	vpaddq		$T0,$D4,$D4		# d4 += h2*r2
	vpaddq		$T1,$D3,$D3		# d3 += h1*r2
	 vmovdqa	-0x40(%r11),$T2		# r3^4
	vpmuludq	$H0,$T3,$T3		# h0*r2
	vpmuludq	$H4,$T4,$T0		# h4*s2
	vpaddq		$T3,$D2,$D2		# d2 += h0*r2
	vpaddq		$T0,$D1,$D1		# d1 += h4*s2
	 vmovdqa	-0x30(%r11),$T3		# s3^4
	vpmuludq	$H3,$T4,$T4		# h3*s2
	 vpmuludq	$H1,$T2,$T1		# h1*r3
	vpaddq		$T4,$D0,$D0		# d0 += h3*s2

	 vmovdqa	-0x10(%r11),$T4		# s4^4
	vpaddq		$T1,$D4,$D4		# d4 += h1*r3
	vpmuludq	$H0,$T2,$T2		# h0*r3
	vpmuludq	$H4,$T3,$T0		# h4*s3
	vpaddq		$T2,$D3,$D3		# d3 += h0*r3
	vpaddq		$T0,$D2,$D2		# d2 += h4*s3
	 vmovdqu	16*2($inp),$T0				# load input
	vpmuludq	$H3,$T3,$T2		# h3*s3
	vpmuludq	$H2,$T3,$T3		# h2*s3
	vpaddq		$T2,$D1,$D1		# d1 += h3*s3
	 vmovdqu	16*3($inp),$T1				#
	vpaddq		$T3,$D0,$D0		# d0 += h2*s3

	vpmuludq	$H2,$T4,$H2		# h2*s4
	vpmuludq	$H3,$T4,$H3		# h3*s4
	 vpsrldq	\$6,$T0,$T2				# splat input
	vpaddq		$H2,$D1,$D1		# d1 += h2*s4
	vpmuludq	$H4,$T4,$H4		# h4*s4
	 vpsrldq	\$6,$T1,$T3				#
	vpaddq		$H3,$D2,$H2		# h2 = d2 + h3*s4
	vpaddq		$H4,$D3,$H3		# h3 = d3 + h4*s4
	vpmuludq	-0x20(%r11),$H0,$H4	# h0*r4
	vpmuludq	$H1,$T4,$H0
	 vpunpckhqdq	$T1,$T0,$T4		# 4
	vpaddq		$H4,$D4,$H4		# h4 = d4 + h0*r4
	vpaddq		$H0,$D0,$H0		# h0 = d0 + h1*s4

	vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpunpcklqdq	$T3,$T2,$T3		# 2:3

	#vpsrlq		\$40,$T4,$T4		# 4
	vpsrldq		\$`40/8`,$T4,$T4	# 4
	vpsrlq		\$26,$T0,$T1
	 vmovdqa	0x00(%rsp),$D4		# preload r0^2
	vpand		$MASK,$T0,$T0		# 0
	vpsrlq		\$4,$T3,$T2
	vpand		$MASK,$T1,$T1		# 1
	vpand		0(%rcx),$T4,$T4		# .Lmask24
	vpsrlq		\$30,$T3,$T3
	vpand		$MASK,$T2,$T2		# 2
	vpand		$MASK,$T3,$T3		# 3
	vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	################################################################
	# lazy reduction as discussed in "NEON crypto" by D.J. Bernstein
	# and P. Schwabe

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$D1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D0
	vpand		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D0,$H0,$H0
	vpsllq		\$2,$D0,$D0
	vpaddq		$D0,$H0,$H0		# h4 -> h0

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	ja		.Loop_avx

.Lskip_loop_avx:
	################################################################
	# multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1

	vpshufd		\$0x10,$D4,$D4		# r0^n, xx12 -> x1x2
	add		\$32,$len
	jnz		.Long_tail_avx

	vpaddq		$H2,$T2,$T2
	vpaddq		$H0,$T0,$T0
	vpaddq		$H1,$T1,$T1
	vpaddq		$H3,$T3,$T3
	vpaddq		$H4,$T4,$T4

.Long_tail_avx:
	vmovdqa		$H2,0x20(%r11)
	vmovdqa		$H0,0x00(%r11)
	vmovdqa		$H1,0x10(%r11)
	vmovdqa		$H3,0x30(%r11)
	vmovdqa		$H4,0x40(%r11)

	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4

	vpmuludq	$T2,$D4,$D2		# d2 = h2*r0
	vpmuludq	$T0,$D4,$D0		# d0 = h0*r0
	 vpshufd	\$0x10,`16*1-64`($ctx),$H2		# r1^n
	vpmuludq	$T1,$D4,$D1		# d1 = h1*r0
	vpmuludq	$T3,$D4,$D3		# d3 = h3*r0
	vpmuludq	$T4,$D4,$D4		# d4 = h4*r0

	vpmuludq	$T3,$H2,$H0		# h3*r1
	vpaddq		$H0,$D4,$D4		# d4 += h3*r1
	 vpshufd	\$0x10,`16*2-64`($ctx),$H3		# s1^n
	vpmuludq	$T2,$H2,$H1		# h2*r1
	vpaddq		$H1,$D3,$D3		# d3 += h2*r1
	 vpshufd	\$0x10,`16*3-64`($ctx),$H4		# r2^n
	vpmuludq	$T1,$H2,$H0		# h1*r1
	vpaddq		$H0,$D2,$D2		# d2 += h1*r1
	vpmuludq	$T0,$H2,$H2		# h0*r1
	vpaddq		$H2,$D1,$D1		# d1 += h0*r1
	vpmuludq	$T4,$H3,$H3		# h4*s1
	vpaddq		$H3,$D0,$D0		# d0 += h4*s1

	 vpshufd	\$0x10,`16*4-64`($ctx),$H2		# s2^n
	vpmuludq	$T2,$H4,$H1		# h2*r2
	vpaddq		$H1,$D4,$D4		# d4 += h2*r2
	vpmuludq	$T1,$H4,$H0		# h1*r2
	vpaddq		$H0,$D3,$D3		# d3 += h1*r2
	 vpshufd	\$0x10,`16*5-64`($ctx),$H3		# r3^n
	vpmuludq	$T0,$H4,$H4		# h0*r2
	vpaddq		$H4,$D2,$D2		# d2 += h0*r2
	vpmuludq	$T4,$H2,$H1		# h4*s2
	vpaddq		$H1,$D1,$D1		# d1 += h4*s2
	 vpshufd	\$0x10,`16*6-64`($ctx),$H4		# s3^n
	vpmuludq	$T3,$H2,$H2		# h3*s2
	vpaddq		$H2,$D0,$D0		# d0 += h3*s2

	vpmuludq	$T1,$H3,$H0		# h1*r3
	vpaddq		$H0,$D4,$D4		# d4 += h1*r3
	vpmuludq	$T0,$H3,$H3		# h0*r3
	vpaddq		$H3,$D3,$D3		# d3 += h0*r3
	 vpshufd	\$0x10,`16*7-64`($ctx),$H2		# r4^n
	vpmuludq	$T4,$H4,$H1		# h4*s3
	vpaddq		$H1,$D2,$D2		# d2 += h4*s3
	 vpshufd	\$0x10,`16*8-64`($ctx),$H3		# s4^n
	vpmuludq	$T3,$H4,$H0		# h3*s3
	vpaddq		$H0,$D1,$D1		# d1 += h3*s3
	vpmuludq	$T2,$H4,$H4		# h2*s3
	vpaddq		$H4,$D0,$D0		# d0 += h2*s3

	vpmuludq	$T0,$H2,$H2		# h0*r4
	vpaddq		$H2,$D4,$D4		# h4 = d4 + h0*r4
	vpmuludq	$T4,$H3,$H1		# h4*s4
	vpaddq		$H1,$D3,$D3		# h3 = d3 + h4*s4
	vpmuludq	$T3,$H3,$H0		# h3*s4
	vpaddq		$H0,$D2,$D2		# h2 = d2 + h3*s4
	vpmuludq	$T2,$H3,$H1		# h2*s4
	vpaddq		$H1,$D1,$D1		# h1 = d1 + h2*s4
	vpmuludq	$T1,$H3,$H3		# h1*s4
	vpaddq		$H3,$D0,$D0		# h0 = d0 + h1*s4

	jz		.Lshort_tail_avx

	vmovdqu		16*0($inp),$H0		# load input
	vmovdqu		16*1($inp),$H1

	vpsrldq		\$6,$H0,$H2		# splat input
	vpsrldq		\$6,$H1,$H3
	vpunpckhqdq	$H1,$H0,$H4		# 4
	vpunpcklqdq	$H1,$H0,$H0		# 0:1
	vpunpcklqdq	$H3,$H2,$H3		# 2:3

	vpsrlq		\$40,$H4,$H4		# 4
	vpsrlq		\$26,$H0,$H1
	vpand		$MASK,$H0,$H0		# 0
	vpsrlq		\$4,$H3,$H2
	vpand		$MASK,$H1,$H1		# 1
	vpsrlq		\$30,$H3,$H3
	vpand		$MASK,$H2,$H2		# 2
	vpand		$MASK,$H3,$H3		# 3
	vpor		32(%rcx),$H4,$H4	# padbit, yes, always

	vpshufd		\$0x32,`16*0-64`($ctx),$T4	# r0^n, 34xx -> x3x4
	vpaddq		0x00(%r11),$H0,$H0
	vpaddq		0x10(%r11),$H1,$H1
	vpaddq		0x20(%r11),$H2,$H2
	vpaddq		0x30(%r11),$H3,$H3
	vpaddq		0x40(%r11),$H4,$H4

	################################################################
	# multiply (inp[0:1]+hash) by r^4:r^3 and accumulate

	vpmuludq	$H0,$T4,$T0		# h0*r0
	vpaddq		$T0,$D0,$D0		# d0 += h0*r0
	vpmuludq	$H1,$T4,$T1		# h1*r0
	vpaddq		$T1,$D1,$D1		# d1 += h1*r0
	vpmuludq	$H2,$T4,$T0		# h2*r0
	vpaddq		$T0,$D2,$D2		# d2 += h2*r0
	 vpshufd	\$0x32,`16*1-64`($ctx),$T2		# r1^n
	vpmuludq	$H3,$T4,$T1		# h3*r0
	vpaddq		$T1,$D3,$D3		# d3 += h3*r0
	vpmuludq	$H4,$T4,$T4		# h4*r0
	vpaddq		$T4,$D4,$D4		# d4 += h4*r0

	vpmuludq	$H3,$T2,$T0		# h3*r1
	vpaddq		$T0,$D4,$D4		# d4 += h3*r1
	 vpshufd	\$0x32,`16*2-64`($ctx),$T3		# s1
	vpmuludq	$H2,$T2,$T1		# h2*r1
	vpaddq		$T1,$D3,$D3		# d3 += h2*r1
	 vpshufd	\$0x32,`16*3-64`($ctx),$T4		# r2
	vpmuludq	$H1,$T2,$T0		# h1*r1
	vpaddq		$T0,$D2,$D2		# d2 += h1*r1
	vpmuludq	$H0,$T2,$T2		# h0*r1
	vpaddq		$T2,$D1,$D1		# d1 += h0*r1
	vpmuludq	$H4,$T3,$T3		# h4*s1
	vpaddq		$T3,$D0,$D0		# d0 += h4*s1

	 vpshufd	\$0x32,`16*4-64`($ctx),$T2		# s2
	vpmuludq	$H2,$T4,$T1		# h2*r2
	vpaddq		$T1,$D4,$D4		# d4 += h2*r2
	vpmuludq	$H1,$T4,$T0		# h1*r2
	vpaddq		$T0,$D3,$D3		# d3 += h1*r2
	 vpshufd	\$0x32,`16*5-64`($ctx),$T3		# r3
	vpmuludq	$H0,$T4,$T4		# h0*r2
	vpaddq		$T4,$D2,$D2		# d2 += h0*r2
	vpmuludq	$H4,$T2,$T1		# h4*s2
	vpaddq		$T1,$D1,$D1		# d1 += h4*s2
	 vpshufd	\$0x32,`16*6-64`($ctx),$T4		# s3
	vpmuludq	$H3,$T2,$T2		# h3*s2
	vpaddq		$T2,$D0,$D0		# d0 += h3*s2

	vpmuludq	$H1,$T3,$T0		# h1*r3
	vpaddq		$T0,$D4,$D4		# d4 += h1*r3
	vpmuludq	$H0,$T3,$T3		# h0*r3
	vpaddq		$T3,$D3,$D3		# d3 += h0*r3
	 vpshufd	\$0x32,`16*7-64`($ctx),$T2		# r4
	vpmuludq	$H4,$T4,$T1		# h4*s3
	vpaddq		$T1,$D2,$D2		# d2 += h4*s3
	 vpshufd	\$0x32,`16*8-64`($ctx),$T3		# s4
	vpmuludq	$H3,$T4,$T0		# h3*s3
	vpaddq		$T0,$D1,$D1		# d1 += h3*s3
	vpmuludq	$H2,$T4,$T4		# h2*s3
	vpaddq		$T4,$D0,$D0		# d0 += h2*s3

	vpmuludq	$H0,$T2,$T2		# h0*r4
	vpaddq		$T2,$D4,$D4		# d4 += h0*r4
	vpmuludq	$H4,$T3,$T1		# h4*s4
	vpaddq		$T1,$D3,$D3		# d3 += h4*s4
	vpmuludq	$H3,$T3,$T0		# h3*s4
	vpaddq		$T0,$D2,$D2		# d2 += h3*s4
	vpmuludq	$H2,$T3,$T1		# h2*s4
	vpaddq		$T1,$D1,$D1		# d1 += h2*s4
	vpmuludq	$H1,$T3,$T3		# h1*s4
	vpaddq		$T3,$D0,$D0		# d0 += h1*s4

.Lshort_tail_avx:
	################################################################
	# horizontal addition

	vpsrldq		\$8,$D4,$T4
	vpsrldq		\$8,$D3,$T3
	vpsrldq		\$8,$D1,$T1
	vpsrldq		\$8,$D0,$T0
	vpsrldq		\$8,$D2,$T2
	vpaddq		$T3,$D3,$D3
	vpaddq		$T4,$D4,$D4
	vpaddq		$T0,$D0,$D0
	vpaddq		$T1,$D1,$D1
	vpaddq		$T2,$D2,$D2

	################################################################
	# lazy reduction

	vpsrlq		\$26,$D3,$H3
	vpand		$MASK,$D3,$D3
	vpaddq		$H3,$D4,$D4		# h3 -> h4

	vpsrlq		\$26,$D0,$H0
	vpand		$MASK,$D0,$D0
	vpaddq		$H0,$D1,$D1		# h0 -> h1

	vpsrlq		\$26,$D4,$H4
	vpand		$MASK,$D4,$D4

	vpsrlq		\$26,$D1,$H1
	vpand		$MASK,$D1,$D1
	vpaddq		$H1,$D2,$D2		# h1 -> h2

	vpaddq		$H4,$D0,$D0
	vpsllq		\$2,$H4,$H4
	vpaddq		$H4,$D0,$D0		# h4 -> h0

	vpsrlq		\$26,$D2,$H2
	vpand		$MASK,$D2,$D2
	vpaddq		$H2,$D3,$D3		# h2 -> h3

	vpsrlq		\$26,$D0,$H0
	vpand		$MASK,$D0,$D0
	vpaddq		$H0,$D1,$D1		# h0 -> h1

	vpsrlq		\$26,$D3,$H3
	vpand		$MASK,$D3,$D3
	vpaddq		$H3,$D4,$D4		# h3 -> h4

	vmovd		$D0,`4*0-48-64`($ctx)	# save partially reduced
	vmovd		$D1,`4*1-48-64`($ctx)
	vmovd		$D2,`4*2-48-64`($ctx)
	vmovd		$D3,`4*3-48-64`($ctx)
	vmovd		$D4,`4*4-48-64`($ctx)
___
$code.=<<___	if ($win64);
	vmovdqa		0x50(%r11),%xmm6
	vmovdqa		0x60(%r11),%xmm7
	vmovdqa		0x70(%r11),%xmm8
	vmovdqa		0x80(%r11),%xmm9
	vmovdqa		0x90(%r11),%xmm10
	vmovdqa		0xa0(%r11),%xmm11
	vmovdqa		0xb0(%r11),%xmm12
	vmovdqa		0xc0(%r11),%xmm13
	vmovdqa		0xd0(%r11),%xmm14
	vmovdqa		0xe0(%r11),%xmm15
	lea		0xf8(%r11),%rsp
.Ldo_avx_epilogue:
___
$code.=<<___	if (!$win64);
	lea		-8(%r10),%rsp
.cfi_def_cfa_register	%rsp
___
$code.=<<___;
	vzeroupper
	RET
.cfi_endproc
___
&end_function("poly1305_blocks_avx");

&declare_function("poly1305_emit_avx", 32, 3);
$code.=<<___;
	cmpl	\$0,20($ctx)	# is_base2_26?
	je	.Lemit

	mov	0($ctx),%eax	# load hash value base 2^26
	mov	4($ctx),%ecx
	mov	8($ctx),%r8d
	mov	12($ctx),%r11d
	mov	16($ctx),%r10d

	shl	\$26,%rcx	# base 2^26 -> base 2^64
	mov	%r8,%r9
	shl	\$52,%r8
	add	%rcx,%rax
	shr	\$12,%r9
	add	%rax,%r8	# h0
	adc	\$0,%r9

	shl	\$14,%r11
	mov	%r10,%rax
	shr	\$24,%r10
	add	%r11,%r9
	shl	\$40,%rax
	add	%rax,%r9	# h1
	adc	\$0,%r10	# h2

	mov	%r10,%rax	# could be partially reduced, so reduce
	mov	%r10,%rcx
	and	\$3,%r10
	shr	\$2,%rax
	and	\$-4,%rcx
	add	%rcx,%rax
	add	%rax,%r8
	adc	\$0,%r9
	adc	\$0,%r10

	mov	%r8,%rax
	add	\$5,%r8		# compare to modulus
	mov	%r9,%rcx
	adc	\$0,%r9
	adc	\$0,%r10
	shr	\$2,%r10	# did 130-bit value overflow?
	cmovnz	%r8,%rax
	cmovnz	%r9,%rcx

	add	0($nonce),%rax	# accumulate nonce
	adc	8($nonce),%rcx
	mov	%rax,0($mac)	# write result
	mov	%rcx,8($mac)

	RET
___
&end_function("poly1305_emit_avx");

if ($avx>1) {

my ($H0,$H1,$H2,$H3,$H4, $MASK, $T4,$T0,$T1,$T2,$T3, $D0,$D1,$D2,$D3,$D4) =
    map("%ymm$_",(0..15));
my $S4=$MASK;

sub poly1305_blocks_avxN {
	my ($avx512) = @_;
	my $suffix = $avx512 ? "_avx512" : "";
$code.=<<___;
.cfi_startproc
	mov	20($ctx),%r8d		# is_base2_26
	cmp	\$128,$len
	jae	.Lblocks_avx2$suffix
	test	%r8d,%r8d
	jz	.Lblocks

.Lblocks_avx2$suffix:
	and	\$-16,$len
	jz	.Lno_data_avx2$suffix

	vzeroupper

	test	%r8d,%r8d
	jz	.Lbase2_64_avx2$suffix

	test	\$63,$len
	jz	.Leven_avx2$suffix

	push	%rbp
.cfi_push	%rbp
	mov 	%rsp,%rbp
	push	%rbx
.cfi_push	%rbx
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lblocks_avx2_body$suffix:

	mov	$len,%r15		# reassign $len

	mov	0($ctx),$d1		# load hash value
	mov	8($ctx),$d2
	mov	16($ctx),$h2#d

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	################################# base 2^26 -> base 2^64
	mov	$d1#d,$h0#d
	and	\$`-1*(1<<31)`,$d1
	mov	$d2,$r1			# borrow $r1
	mov	$d2#d,$h1#d
	and	\$`-1*(1<<31)`,$d2

	shr	\$6,$d1
	shl	\$52,$r1
	add	$d1,$h0
	shr	\$12,$h1
	shr	\$18,$d2
	add	$r1,$h0
	adc	$d2,$h1

	mov	$h2,$d1
	shl	\$40,$d1
	shr	\$24,$h2
	add	$d1,$h1
	adc	\$0,$h2			# can be partially reduced...

	mov	\$-4,$d2		# ... so reduce
	mov	$h2,$d1
	and	$h2,$d2
	shr	\$2,$d1
	and	\$3,$h2
	add	$d2,$d1			# =*5
	add	$d1,$h0
	adc	\$0,$h1
	adc	\$0,$h2

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

.Lbase2_26_pre_avx2$suffix:
	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
	sub	\$16,%r15

	call	__poly1305_block
	mov	$r1,%rax

	test	\$63,%r15
	jnz	.Lbase2_26_pre_avx2$suffix

	test	$padbit,$padbit		# if $padbit is zero,
	jz	.Lstore_base2_64_avx2$suffix	# store hash in base 2^64 format

	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$r0
	mov	$h1,$r1
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$r0
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$r0,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$r1
	and	\$0x3ffffff,$h1		# h[3]
	or	$r1,$h2			# h[4]

	test	%r15,%r15
	jz	.Lstore_base2_26_avx2$suffix

	vmovd	%rax#d,%x#$H0
	vmovd	%rdx#d,%x#$H1
	vmovd	$h0#d,%x#$H2
	vmovd	$h1#d,%x#$H3
	vmovd	$h2#d,%x#$H4
	jmp	.Lproceed_avx2$suffix

.align	32
.Lstore_base2_64_avx2$suffix:
	mov	$h0,0($ctx)
	mov	$h1,8($ctx)
	mov	$h2,16($ctx)		# note that is_base2_26 is zeroed
	jmp	.Ldone_avx2$suffix

.align	16
.Lstore_base2_26_avx2$suffix:
	mov	%rax#d,0($ctx)		# store hash value base 2^26
	mov	%rdx#d,4($ctx)
	mov	$h0#d,8($ctx)
	mov	$h1#d,12($ctx)
	mov	$h2#d,16($ctx)
.align	16
.Ldone_avx2$suffix:
	pop 		%r15
.cfi_restore	%r15
	pop 		%r14
.cfi_restore	%r14
	pop 		%r13
.cfi_restore	%r13
	pop 		%r12
.cfi_restore	%r12
	pop 		%rbx
.cfi_restore	%rbx
	pop 		%rbp
.cfi_restore 	%rbp
.Lno_data_avx2$suffix:
.Lblocks_avx2_epilogue$suffix:
	RET
.cfi_endproc

.align	32
.Lbase2_64_avx2$suffix:
.cfi_startproc
	push	%rbp
.cfi_push	%rbp
	mov 	%rsp,%rbp
	push	%rbx
.cfi_push	%rbx
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lbase2_64_avx2_body$suffix:

	mov	$len,%r15		# reassign $len

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	mov	0($ctx),$h0		# load hash value
	mov	8($ctx),$h1
	mov	16($ctx),$h2#d

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

	test	\$63,$len
	jz	.Linit_avx2$suffix

.Lbase2_64_pre_avx2$suffix:
	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
	sub	\$16,%r15

	call	__poly1305_block
	mov	$r1,%rax

	test	\$63,%r15
	jnz	.Lbase2_64_pre_avx2$suffix

.Linit_avx2$suffix:
	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$d1
	mov	$h1,$d2
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$d1
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$d1,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$d2
	and	\$0x3ffffff,$h1		# h[3]
	or	$d2,$h2			# h[4]

	vmovd	%rax#d,%x#$H0
	vmovd	%rdx#d,%x#$H1
	vmovd	$h0#d,%x#$H2
	vmovd	$h1#d,%x#$H3
	vmovd	$h2#d,%x#$H4
	movl	\$1,20($ctx)		# set is_base2_26

	call	__poly1305_init_avx

.Lproceed_avx2$suffix:
	mov	%r15,$len			# restore $len
___
$code.=<<___ if (!$kernel);
	mov	OPENSSL_ia32cap_P+8(%rip),%r9d
	mov	\$`(1<<31|1<<30|1<<16)`,%r11d
___
$code.=<<___;
	pop 		%r15
.cfi_restore	%r15
	pop 		%r14
.cfi_restore	%r14
	pop 		%r13
.cfi_restore	%r13
	pop 		%r12
.cfi_restore	%r12
	pop 		%rbx
.cfi_restore	%rbx
	pop 		%rbp
.cfi_restore 	%rbp
.Lbase2_64_avx2_epilogue$suffix:
	jmp	.Ldo_avx2$suffix
.cfi_endproc

.align	32
.Leven_avx2$suffix:
.cfi_startproc
___
$code.=<<___ if (!$kernel);
	mov		OPENSSL_ia32cap_P+8(%rip),%r9d
___
$code.=<<___;
	vmovd		4*0($ctx),%x#$H0	# load hash value base 2^26
	vmovd		4*1($ctx),%x#$H1
	vmovd		4*2($ctx),%x#$H2
	vmovd		4*3($ctx),%x#$H3
	vmovd		4*4($ctx),%x#$H4

.Ldo_avx2$suffix:
___
$code.=<<___		if (!$kernel && $avx>2);
	cmp		\$512,$len
	jb		.Lskip_avx512
	and		%r11d,%r9d
	test		\$`1<<16`,%r9d		# check for AVX512F
	jnz		.Lblocks_avx512
.Lskip_avx512$suffix:
___
$code.=<<___ if ($avx > 2 && $avx512 && $kernel);
	cmp		\$512,$len
	jae		.Lblocks_avx512
___
$code.=<<___	if (!$win64);
	lea		8(%rsp),%r10
.cfi_def_cfa_register	%r10
	sub		\$0x128,%rsp
___
$code.=<<___	if ($win64);
	lea		8(%rsp),%r10
	sub		\$0x1c8,%rsp
	vmovdqa		%xmm6,-0xb0(%r10)
	vmovdqa		%xmm7,-0xa0(%r10)
	vmovdqa		%xmm8,-0x90(%r10)
	vmovdqa		%xmm9,-0x80(%r10)
	vmovdqa		%xmm10,-0x70(%r10)
	vmovdqa		%xmm11,-0x60(%r10)
	vmovdqa		%xmm12,-0x50(%r10)
	vmovdqa		%xmm13,-0x40(%r10)
	vmovdqa		%xmm14,-0x30(%r10)
	vmovdqa		%xmm15,-0x20(%r10)
.Ldo_avx2_body$suffix:
___
$code.=<<___;
	lea		.Lconst(%rip),%rcx
	lea		48+64($ctx),$ctx	# size optimization
	vmovdqa		96(%rcx),$T0		# .Lpermd_avx2

	# expand and copy pre-calculated table to stack
	vmovdqu		`16*0-64`($ctx),%x#$T2
	and		\$-512,%rsp
	vmovdqu		`16*1-64`($ctx),%x#$T3
	vmovdqu		`16*2-64`($ctx),%x#$T4
	vmovdqu		`16*3-64`($ctx),%x#$D0
	vmovdqu		`16*4-64`($ctx),%x#$D1
	vmovdqu		`16*5-64`($ctx),%x#$D2
	lea		0x90(%rsp),%rax		# size optimization
	vmovdqu		`16*6-64`($ctx),%x#$D3
	vpermd		$T2,$T0,$T2		# 00003412 -> 14243444
	vmovdqu		`16*7-64`($ctx),%x#$D4
	vpermd		$T3,$T0,$T3
	vmovdqu		`16*8-64`($ctx),%x#$MASK
	vpermd		$T4,$T0,$T4
	vmovdqa		$T2,0x00(%rsp)
	vpermd		$D0,$T0,$D0
	vmovdqa		$T3,0x20-0x90(%rax)
	vpermd		$D1,$T0,$D1
	vmovdqa		$T4,0x40-0x90(%rax)
	vpermd		$D2,$T0,$D2
	vmovdqa		$D0,0x60-0x90(%rax)
	vpermd		$D3,$T0,$D3
	vmovdqa		$D1,0x80-0x90(%rax)
	vpermd		$D4,$T0,$D4
	vmovdqa		$D2,0xa0-0x90(%rax)
	vpermd		$MASK,$T0,$MASK
	vmovdqa		$D3,0xc0-0x90(%rax)
	vmovdqa		$D4,0xe0-0x90(%rax)
	vmovdqa		$MASK,0x100-0x90(%rax)
	vmovdqa		64(%rcx),$MASK		# .Lmask26

	################################################################
	# load input
	vmovdqu		16*0($inp),%x#$T0
	vmovdqu		16*1($inp),%x#$T1
	vinserti128	\$1,16*2($inp),$T0,$T0
	vinserti128	\$1,16*3($inp),$T1,$T1
	lea		16*4($inp),$inp

	vpsrldq		\$6,$T0,$T2		# splat input
	vpsrldq		\$6,$T1,$T3
	vpunpckhqdq	$T1,$T0,$T4		# 4
	vpunpcklqdq	$T3,$T2,$T2		# 2:3
	vpunpcklqdq	$T1,$T0,$T0		# 0:1

	vpsrlq		\$30,$T2,$T3
	vpsrlq		\$4,$T2,$T2
	vpsrlq		\$26,$T0,$T1
	vpsrlq		\$40,$T4,$T4		# 4
	vpand		$MASK,$T2,$T2		# 2
	vpand		$MASK,$T0,$T0		# 0
	vpand		$MASK,$T1,$T1		# 1
	vpand		$MASK,$T3,$T3		# 3
	vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	vpaddq		$H2,$T2,$H2		# accumulate input
	sub		\$64,$len
	jz		.Ltail_avx2$suffix
	jmp		.Loop_avx2$suffix

.align	32
.Loop_avx2$suffix:
	################################################################
	# ((inp[0]*r^4+inp[4])*r^4+inp[ 8])*r^4
	# ((inp[1]*r^4+inp[5])*r^4+inp[ 9])*r^3
	# ((inp[2]*r^4+inp[6])*r^4+inp[10])*r^2
	# ((inp[3]*r^4+inp[7])*r^4+inp[11])*r^1
	#   \________/\__________/
	################################################################
	#vpaddq		$H2,$T2,$H2		# accumulate input
	vpaddq		$H0,$T0,$H0
	vmovdqa		`32*0`(%rsp),$T0	# r0^4
	vpaddq		$H1,$T1,$H1
	vmovdqa		`32*1`(%rsp),$T1	# r1^4
	vpaddq		$H3,$T3,$H3
	vmovdqa		`32*3`(%rsp),$T2	# r2^4
	vpaddq		$H4,$T4,$H4
	vmovdqa		`32*6-0x90`(%rax),$T3	# s3^4
	vmovdqa		`32*8-0x90`(%rax),$S4	# s4^4

	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
	#
	# however, as h2 is "chronologically" first one available pull
	# corresponding operations up, so it's
	#
	# d4 = h2*r2   + h4*r0 + h3*r1             + h1*r3   + h0*r4
	# d3 = h2*r1   + h3*r0           + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0           + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h2*5*r4 + h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3
	# d0 = h2*5*r3 + h0*r0 + h4*5*r1 + h3*5*r2           + h1*5*r4

	vpmuludq	$H2,$T0,$D2		# d2 = h2*r0
	vpmuludq	$H2,$T1,$D3		# d3 = h2*r1
	vpmuludq	$H2,$T2,$D4		# d4 = h2*r2
	vpmuludq	$H2,$T3,$D0		# d0 = h2*s3
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4

	vpmuludq	$H0,$T1,$T4		# h0*r1
	vpmuludq	$H1,$T1,$H2		# h1*r1, borrow $H2 as temp
	vpaddq		$T4,$D1,$D1		# d1 += h0*r1
	vpaddq		$H2,$D2,$D2		# d2 += h1*r1
	vpmuludq	$H3,$T1,$T4		# h3*r1
	vpmuludq	`32*2`(%rsp),$H4,$H2	# h4*s1
	vpaddq		$T4,$D4,$D4		# d4 += h3*r1
	vpaddq		$H2,$D0,$D0		# d0 += h4*s1
	 vmovdqa	`32*4-0x90`(%rax),$T1	# s2

	vpmuludq	$H0,$T0,$T4		# h0*r0
	vpmuludq	$H1,$T0,$H2		# h1*r0
	vpaddq		$T4,$D0,$D0		# d0 += h0*r0
	vpaddq		$H2,$D1,$D1		# d1 += h1*r0
	vpmuludq	$H3,$T0,$T4		# h3*r0
	vpmuludq	$H4,$T0,$H2		# h4*r0
	 vmovdqu	16*0($inp),%x#$T0	# load input
	vpaddq		$T4,$D3,$D3		# d3 += h3*r0
	vpaddq		$H2,$D4,$D4		# d4 += h4*r0
	 vinserti128	\$1,16*2($inp),$T0,$T0

	vpmuludq	$H3,$T1,$T4		# h3*s2
	vpmuludq	$H4,$T1,$H2		# h4*s2
	 vmovdqu	16*1($inp),%x#$T1
	vpaddq		$T4,$D0,$D0		# d0 += h3*s2
	vpaddq		$H2,$D1,$D1		# d1 += h4*s2
	 vmovdqa	`32*5-0x90`(%rax),$H2	# r3
	vpmuludq	$H1,$T2,$T4		# h1*r2
	vpmuludq	$H0,$T2,$T2		# h0*r2
	vpaddq		$T4,$D3,$D3		# d3 += h1*r2
	vpaddq		$T2,$D2,$D2		# d2 += h0*r2
	 vinserti128	\$1,16*3($inp),$T1,$T1
	 lea		16*4($inp),$inp

	vpmuludq	$H1,$H2,$T4		# h1*r3
	vpmuludq	$H0,$H2,$H2		# h0*r3
	 vpsrldq	\$6,$T0,$T2		# splat input
	vpaddq		$T4,$D4,$D4		# d4 += h1*r3
	vpaddq		$H2,$D3,$D3		# d3 += h0*r3
	vpmuludq	$H3,$T3,$T4		# h3*s3
	vpmuludq	$H4,$T3,$H2		# h4*s3
	 vpsrldq	\$6,$T1,$T3
	vpaddq		$T4,$D1,$D1		# d1 += h3*s3
	vpaddq		$H2,$D2,$D2		# d2 += h4*s3
	 vpunpckhqdq	$T1,$T0,$T4		# 4

	vpmuludq	$H3,$S4,$H3		# h3*s4
	vpmuludq	$H4,$S4,$H4		# h4*s4
	 vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpaddq		$H3,$D2,$H2		# h2 = d2 + h3*r4
	vpaddq		$H4,$D3,$H3		# h3 = d3 + h4*r4
	 vpunpcklqdq	$T3,$T2,$T3		# 2:3
	vpmuludq	`32*7-0x90`(%rax),$H0,$H4	# h0*r4
	vpmuludq	$H1,$S4,$H0		# h1*s4
	vmovdqa		64(%rcx),$MASK		# .Lmask26
	vpaddq		$H4,$D4,$H4		# h4 = d4 + h0*r4
	vpaddq		$H0,$D0,$H0		# h0 = d0 + h1*s4

	################################################################
	# lazy reduction (interleaved with tail of input splat)

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$D1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D4
	vpand		$MASK,$H4,$H4

	 vpsrlq		\$4,$T3,$T2

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	 vpand		$MASK,$T2,$T2		# 2
	 vpsrlq		\$26,$T0,$T1

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	 vpaddq		$T2,$H2,$H2		# modulo-scheduled
	 vpsrlq		\$30,$T3,$T3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	 vpsrlq		\$40,$T4,$T4		# 4

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	 vpand		$MASK,$T0,$T0		# 0
	 vpand		$MASK,$T1,$T1		# 1
	 vpand		$MASK,$T3,$T3		# 3
	 vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	sub		\$64,$len
	jnz		.Loop_avx2$suffix

	.byte		0x66,0x90
.Ltail_avx2$suffix:
	################################################################
	# while above multiplications were by r^4 in all lanes, in last
	# iteration we multiply least significant lane by r^4 and most
	# significant one by r, so copy of above except that references
	# to the precomputed table are displaced by 4...

	#vpaddq		$H2,$T2,$H2		# accumulate input
	vpaddq		$H0,$T0,$H0
	vmovdqu		`32*0+4`(%rsp),$T0	# r0^4
	vpaddq		$H1,$T1,$H1
	vmovdqu		`32*1+4`(%rsp),$T1	# r1^4
	vpaddq		$H3,$T3,$H3
	vmovdqu		`32*3+4`(%rsp),$T2	# r2^4
	vpaddq		$H4,$T4,$H4
	vmovdqu		`32*6+4-0x90`(%rax),$T3	# s3^4
	vmovdqu		`32*8+4-0x90`(%rax),$S4	# s4^4

	vpmuludq	$H2,$T0,$D2		# d2 = h2*r0
	vpmuludq	$H2,$T1,$D3		# d3 = h2*r1
	vpmuludq	$H2,$T2,$D4		# d4 = h2*r2
	vpmuludq	$H2,$T3,$D0		# d0 = h2*s3
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4

	vpmuludq	$H0,$T1,$T4		# h0*r1
	vpmuludq	$H1,$T1,$H2		# h1*r1
	vpaddq		$T4,$D1,$D1		# d1 += h0*r1
	vpaddq		$H2,$D2,$D2		# d2 += h1*r1
	vpmuludq	$H3,$T1,$T4		# h3*r1
	vpmuludq	`32*2+4`(%rsp),$H4,$H2	# h4*s1
	vpaddq		$T4,$D4,$D4		# d4 += h3*r1
	vpaddq		$H2,$D0,$D0		# d0 += h4*s1

	vpmuludq	$H0,$T0,$T4		# h0*r0
	vpmuludq	$H1,$T0,$H2		# h1*r0
	vpaddq		$T4,$D0,$D0		# d0 += h0*r0
	 vmovdqu	`32*4+4-0x90`(%rax),$T1	# s2
	vpaddq		$H2,$D1,$D1		# d1 += h1*r0
	vpmuludq	$H3,$T0,$T4		# h3*r0
	vpmuludq	$H4,$T0,$H2		# h4*r0
	vpaddq		$T4,$D3,$D3		# d3 += h3*r0
	vpaddq		$H2,$D4,$D4		# d4 += h4*r0

	vpmuludq	$H3,$T1,$T4		# h3*s2
	vpmuludq	$H4,$T1,$H2		# h4*s2
	vpaddq		$T4,$D0,$D0		# d0 += h3*s2
	vpaddq		$H2,$D1,$D1		# d1 += h4*s2
	 vmovdqu	`32*5+4-0x90`(%rax),$H2	# r3
	vpmuludq	$H1,$T2,$T4		# h1*r2
	vpmuludq	$H0,$T2,$T2		# h0*r2
	vpaddq		$T4,$D3,$D3		# d3 += h1*r2
	vpaddq		$T2,$D2,$D2		# d2 += h0*r2

	vpmuludq	$H1,$H2,$T4		# h1*r3
	vpmuludq	$H0,$H2,$H2		# h0*r3
	vpaddq		$T4,$D4,$D4		# d4 += h1*r3
	vpaddq		$H2,$D3,$D3		# d3 += h0*r3
	vpmuludq	$H3,$T3,$T4		# h3*s3
	vpmuludq	$H4,$T3,$H2		# h4*s3
	vpaddq		$T4,$D1,$D1		# d1 += h3*s3
	vpaddq		$H2,$D2,$D2		# d2 += h4*s3

	vpmuludq	$H3,$S4,$H3		# h3*s4
	vpmuludq	$H4,$S4,$H4		# h4*s4
	vpaddq		$H3,$D2,$H2		# h2 = d2 + h3*r4
	vpaddq		$H4,$D3,$H3		# h3 = d3 + h4*r4
	vpmuludq	`32*7+4-0x90`(%rax),$H0,$H4		# h0*r4
	vpmuludq	$H1,$S4,$H0		# h1*s4
	vmovdqa		64(%rcx),$MASK		# .Lmask26
	vpaddq		$H4,$D4,$H4		# h4 = d4 + h0*r4
	vpaddq		$H0,$D0,$H0		# h0 = d0 + h1*s4

	################################################################
	# horizontal addition

	vpsrldq		\$8,$D1,$T1
	vpsrldq		\$8,$H2,$T2
	vpsrldq		\$8,$H3,$T3
	vpsrldq		\$8,$H4,$T4
	vpsrldq		\$8,$H0,$T0
	vpaddq		$T1,$D1,$D1
	vpaddq		$T2,$H2,$H2
	vpaddq		$T3,$H3,$H3
	vpaddq		$T4,$H4,$H4
	vpaddq		$T0,$H0,$H0

	vpermq		\$0x2,$H3,$T3
	vpermq		\$0x2,$H4,$T4
	vpermq		\$0x2,$H0,$T0
	vpermq		\$0x2,$D1,$T1
	vpermq		\$0x2,$H2,$T2
	vpaddq		$T3,$H3,$H3
	vpaddq		$T4,$H4,$H4
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$D1,$D1
	vpaddq		$T2,$H2,$H2

	################################################################
	# lazy reduction

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$D1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D4
	vpand		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vmovd		%x#$H0,`4*0-48-64`($ctx)# save partially reduced
	vmovd		%x#$H1,`4*1-48-64`($ctx)
	vmovd		%x#$H2,`4*2-48-64`($ctx)
	vmovd		%x#$H3,`4*3-48-64`($ctx)
	vmovd		%x#$H4,`4*4-48-64`($ctx)
___
$code.=<<___	if ($win64);
	vmovdqa		-0xb0(%r10),%xmm6
	vmovdqa		-0xa0(%r10),%xmm7
	vmovdqa		-0x90(%r10),%xmm8
	vmovdqa		-0x80(%r10),%xmm9
	vmovdqa		-0x70(%r10),%xmm10
	vmovdqa		-0x60(%r10),%xmm11
	vmovdqa		-0x50(%r10),%xmm12
	vmovdqa		-0x40(%r10),%xmm13
	vmovdqa		-0x30(%r10),%xmm14
	vmovdqa		-0x20(%r10),%xmm15
	lea		-8(%r10),%rsp
.Ldo_avx2_epilogue$suffix:
___
$code.=<<___	if (!$win64);
	lea		-8(%r10),%rsp
.cfi_def_cfa_register	%rsp
___
$code.=<<___;
	vzeroupper
	RET
.cfi_endproc
___
if($avx > 2 && $avx512) {
my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24));
my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29));
my $PADBIT="%zmm30";

map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3));		# switch to %zmm domain
map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4));
map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4));
map(s/%y/%z/,($MASK));

$code.=<<___;
.cfi_startproc
.Lblocks_avx512:
	mov		\$15,%eax
	kmovw		%eax,%k2
___
$code.=<<___	if (!$win64);
	lea		8(%rsp),%r10
.cfi_def_cfa_register	%r10
	sub		\$0x128,%rsp
___
$code.=<<___	if ($win64);
	lea		8(%rsp),%r10
	sub		\$0x1c8,%rsp
	vmovdqa		%xmm6,-0xb0(%r10)
	vmovdqa		%xmm7,-0xa0(%r10)
	vmovdqa		%xmm8,-0x90(%r10)
	vmovdqa		%xmm9,-0x80(%r10)
	vmovdqa		%xmm10,-0x70(%r10)
	vmovdqa		%xmm11,-0x60(%r10)
	vmovdqa		%xmm12,-0x50(%r10)
	vmovdqa		%xmm13,-0x40(%r10)
	vmovdqa		%xmm14,-0x30(%r10)
	vmovdqa		%xmm15,-0x20(%r10)
.Ldo_avx512_body:
___
$code.=<<___;
	lea		.Lconst(%rip),%rcx
	lea		48+64($ctx),$ctx	# size optimization
	vmovdqa		96(%rcx),%y#$T2		# .Lpermd_avx2

	# expand pre-calculated table
	vmovdqu		`16*0-64`($ctx),%x#$D0	# will become expanded ${R0}
	and		\$-512,%rsp
	vmovdqu		`16*1-64`($ctx),%x#$D1	# will become ... ${R1}
	mov		\$0x20,%rax
	vmovdqu		`16*2-64`($ctx),%x#$T0	# ... ${S1}
	vmovdqu		`16*3-64`($ctx),%x#$D2	# ... ${R2}
	vmovdqu		`16*4-64`($ctx),%x#$T1	# ... ${S2}
	vmovdqu		`16*5-64`($ctx),%x#$D3	# ... ${R3}
	vmovdqu		`16*6-64`($ctx),%x#$T3	# ... ${S3}
	vmovdqu		`16*7-64`($ctx),%x#$D4	# ... ${R4}
	vmovdqu		`16*8-64`($ctx),%x#$T4	# ... ${S4}
	vpermd		$D0,$T2,$R0		# 00003412 -> 14243444
	vpbroadcastq	64(%rcx),$MASK		# .Lmask26
	vpermd		$D1,$T2,$R1
	vpermd		$T0,$T2,$S1
	vpermd		$D2,$T2,$R2
	vmovdqa64	$R0,0x00(%rsp){%k2}	# save in case $len%128 != 0
	 vpsrlq		\$32,$R0,$T0		# 14243444 -> 01020304
	vpermd		$T1,$T2,$S2
	vmovdqu64	$R1,0x00(%rsp,%rax){%k2}
	 vpsrlq		\$32,$R1,$T1
	vpermd		$D3,$T2,$R3
	vmovdqa64	$S1,0x40(%rsp){%k2}
	vpermd		$T3,$T2,$S3
	vpermd		$D4,$T2,$R4
	vmovdqu64	$R2,0x40(%rsp,%rax){%k2}
	vpermd		$T4,$T2,$S4
	vmovdqa64	$S2,0x80(%rsp){%k2}
	vmovdqu64	$R3,0x80(%rsp,%rax){%k2}
	vmovdqa64	$S3,0xc0(%rsp){%k2}
	vmovdqu64	$R4,0xc0(%rsp,%rax){%k2}
	vmovdqa64	$S4,0x100(%rsp){%k2}

	################################################################
	# calculate 5th through 8th powers of the key
	#
	# d0 = r0'*r0 + r1'*5*r4 + r2'*5*r3 + r3'*5*r2 + r4'*5*r1
	# d1 = r0'*r1 + r1'*r0   + r2'*5*r4 + r3'*5*r3 + r4'*5*r2
	# d2 = r0'*r2 + r1'*r1   + r2'*r0   + r3'*5*r4 + r4'*5*r3
	# d3 = r0'*r3 + r1'*r2   + r2'*r1   + r3'*r0   + r4'*5*r4
	# d4 = r0'*r4 + r1'*r3   + r2'*r2   + r3'*r1   + r4'*r0

	vpmuludq	$T0,$R0,$D0		# d0 = r0'*r0
	vpmuludq	$T0,$R1,$D1		# d1 = r0'*r1
	vpmuludq	$T0,$R2,$D2		# d2 = r0'*r2
	vpmuludq	$T0,$R3,$D3		# d3 = r0'*r3
	vpmuludq	$T0,$R4,$D4		# d4 = r0'*r4
	 vpsrlq		\$32,$R2,$T2

	vpmuludq	$T1,$S4,$M0
	vpmuludq	$T1,$R0,$M1
	vpmuludq	$T1,$R1,$M2
	vpmuludq	$T1,$R2,$M3
	vpmuludq	$T1,$R3,$M4
	 vpsrlq		\$32,$R3,$T3
	vpaddq		$M0,$D0,$D0		# d0 += r1'*5*r4
	vpaddq		$M1,$D1,$D1		# d1 += r1'*r0
	vpaddq		$M2,$D2,$D2		# d2 += r1'*r1
	vpaddq		$M3,$D3,$D3		# d3 += r1'*r2
	vpaddq		$M4,$D4,$D4		# d4 += r1'*r3

	vpmuludq	$T2,$S3,$M0
	vpmuludq	$T2,$S4,$M1
	vpmuludq	$T2,$R1,$M3
	vpmuludq	$T2,$R2,$M4
	vpmuludq	$T2,$R0,$M2
	 vpsrlq		\$32,$R4,$T4
	vpaddq		$M0,$D0,$D0		# d0 += r2'*5*r3
	vpaddq		$M1,$D1,$D1		# d1 += r2'*5*r4
	vpaddq		$M3,$D3,$D3		# d3 += r2'*r1
	vpaddq		$M4,$D4,$D4		# d4 += r2'*r2
	vpaddq		$M2,$D2,$D2		# d2 += r2'*r0

	vpmuludq	$T3,$S2,$M0
	vpmuludq	$T3,$R0,$M3
	vpmuludq	$T3,$R1,$M4
	vpmuludq	$T3,$S3,$M1
	vpmuludq	$T3,$S4,$M2
	vpaddq		$M0,$D0,$D0		# d0 += r3'*5*r2
	vpaddq		$M3,$D3,$D3		# d3 += r3'*r0
	vpaddq		$M4,$D4,$D4		# d4 += r3'*r1
	vpaddq		$M1,$D1,$D1		# d1 += r3'*5*r3
	vpaddq		$M2,$D2,$D2		# d2 += r3'*5*r4

	vpmuludq	$T4,$S4,$M3
	vpmuludq	$T4,$R0,$M4
	vpmuludq	$T4,$S1,$M0
	vpmuludq	$T4,$S2,$M1
	vpmuludq	$T4,$S3,$M2
	vpaddq		$M3,$D3,$D3		# d3 += r2'*5*r4
	vpaddq		$M4,$D4,$D4		# d4 += r2'*r0
	vpaddq		$M0,$D0,$D0		# d0 += r2'*5*r1
	vpaddq		$M1,$D1,$D1		# d1 += r2'*5*r2
	vpaddq		$M2,$D2,$D2		# d2 += r2'*5*r3

	################################################################
	# load input
	vmovdqu64	16*0($inp),%z#$T3
	vmovdqu64	16*4($inp),%z#$T4
	lea		16*8($inp),$inp

	################################################################
	# lazy reduction

	vpsrlq		\$26,$D3,$M3
	vpandq		$MASK,$D3,$D3
	vpaddq		$M3,$D4,$D4		# d3 -> d4

	vpsrlq		\$26,$D0,$M0
	vpandq		$MASK,$D0,$D0
	vpaddq		$M0,$D1,$D1		# d0 -> d1

	vpsrlq		\$26,$D4,$M4
	vpandq		$MASK,$D4,$D4

	vpsrlq		\$26,$D1,$M1
	vpandq		$MASK,$D1,$D1
	vpaddq		$M1,$D2,$D2		# d1 -> d2

	vpaddq		$M4,$D0,$D0
	vpsllq		\$2,$M4,$M4
	vpaddq		$M4,$D0,$D0		# d4 -> d0

	vpsrlq		\$26,$D2,$M2
	vpandq		$MASK,$D2,$D2
	vpaddq		$M2,$D3,$D3		# d2 -> d3

	vpsrlq		\$26,$D0,$M0
	vpandq		$MASK,$D0,$D0
	vpaddq		$M0,$D1,$D1		# d0 -> d1

	vpsrlq		\$26,$D3,$M3
	vpandq		$MASK,$D3,$D3
	vpaddq		$M3,$D4,$D4		# d3 -> d4

	################################################################
	# at this point we have 14243444 in $R0-$S4 and 05060708 in
	# $D0-$D4, ...

	vpunpcklqdq	$T4,$T3,$T0	# transpose input
	vpunpckhqdq	$T4,$T3,$T4

	# ... since input 64-bit lanes are ordered as 73625140, we could
	# "vperm" it to 76543210 (here and in each loop iteration), *or*
	# we could just flow along, hence the goal for $R0-$S4 is
	# 1858286838784888 ...

	vmovdqa32	128(%rcx),$M0		# .Lpermd_avx512:
	mov		\$0x7777,%eax
	kmovw		%eax,%k1

	vpermd		$R0,$M0,$R0		# 14243444 -> 1---2---3---4---
	vpermd		$R1,$M0,$R1
	vpermd		$R2,$M0,$R2
	vpermd		$R3,$M0,$R3
	vpermd		$R4,$M0,$R4

	vpermd		$D0,$M0,${R0}{%k1}	# 05060708 -> 1858286838784888
	vpermd		$D1,$M0,${R1}{%k1}
	vpermd		$D2,$M0,${R2}{%k1}
	vpermd		$D3,$M0,${R3}{%k1}
	vpermd		$D4,$M0,${R4}{%k1}

	vpslld		\$2,$R1,$S1		# *5
	vpslld		\$2,$R2,$S2
	vpslld		\$2,$R3,$S3
	vpslld		\$2,$R4,$S4
	vpaddd		$R1,$S1,$S1
	vpaddd		$R2,$S2,$S2
	vpaddd		$R3,$S3,$S3
	vpaddd		$R4,$S4,$S4

	vpbroadcastq	32(%rcx),$PADBIT	# .L129

	vpsrlq		\$52,$T0,$T2		# splat input
	vpsllq		\$12,$T4,$T3
	vporq		$T3,$T2,$T2
	vpsrlq		\$26,$T0,$T1
	vpsrlq		\$14,$T4,$T3
	vpsrlq		\$40,$T4,$T4		# 4
	vpandq		$MASK,$T2,$T2		# 2
	vpandq		$MASK,$T0,$T0		# 0
	#vpandq		$MASK,$T1,$T1		# 1
	#vpandq		$MASK,$T3,$T3		# 3
	#vporq		$PADBIT,$T4,$T4		# padbit, yes, always

	vpaddq		$H2,$T2,$H2		# accumulate input
	sub		\$192,$len
	jbe		.Ltail_avx512
	jmp		.Loop_avx512

.align	32
.Loop_avx512:
	################################################################
	# ((inp[0]*r^8+inp[ 8])*r^8+inp[16])*r^8
	# ((inp[1]*r^8+inp[ 9])*r^8+inp[17])*r^7
	# ((inp[2]*r^8+inp[10])*r^8+inp[18])*r^6
	# ((inp[3]*r^8+inp[11])*r^8+inp[19])*r^5
	# ((inp[4]*r^8+inp[12])*r^8+inp[20])*r^4
	# ((inp[5]*r^8+inp[13])*r^8+inp[21])*r^3
	# ((inp[6]*r^8+inp[14])*r^8+inp[22])*r^2
	# ((inp[7]*r^8+inp[15])*r^8+inp[23])*r^1
	#   \________/\___________/
	################################################################
	#vpaddq		$H2,$T2,$H2		# accumulate input

	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
	#
	# however, as h2 is "chronologically" first one available pull
	# corresponding operations up, so it's
	#
	# d3 = h2*r1   + h0*r3 + h1*r2   + h3*r0 + h4*5*r4
	# d4 = h2*r2   + h0*r4 + h1*r3   + h3*r1 + h4*r0
	# d0 = h2*5*r3 + h0*r0 + h1*5*r4         + h3*5*r2 + h4*5*r1
	# d1 = h2*5*r4 + h0*r1           + h1*r0 + h3*5*r3 + h4*5*r2
	# d2 = h2*r0           + h0*r2   + h1*r1 + h3*5*r4 + h4*5*r3

	vpmuludq	$H2,$R1,$D3		# d3 = h2*r1
	 vpaddq		$H0,$T0,$H0
	vpmuludq	$H2,$R2,$D4		# d4 = h2*r2
	 vpandq		$MASK,$T1,$T1		# 1
	vpmuludq	$H2,$S3,$D0		# d0 = h2*s3
	 vpandq		$MASK,$T3,$T3		# 3
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4
	 vporq		$PADBIT,$T4,$T4		# padbit, yes, always
	vpmuludq	$H2,$R0,$D2		# d2 = h2*r0
	 vpaddq		$H1,$T1,$H1		# accumulate input
	 vpaddq		$H3,$T3,$H3
	 vpaddq		$H4,$T4,$H4

	  vmovdqu64	16*0($inp),$T3		# load input
	  vmovdqu64	16*4($inp),$T4
	  lea		16*8($inp),$inp
	vpmuludq	$H0,$R3,$M3
	vpmuludq	$H0,$R4,$M4
	vpmuludq	$H0,$R0,$M0
	vpmuludq	$H0,$R1,$M1
	vpaddq		$M3,$D3,$D3		# d3 += h0*r3
	vpaddq		$M4,$D4,$D4		# d4 += h0*r4
	vpaddq		$M0,$D0,$D0		# d0 += h0*r0
	vpaddq		$M1,$D1,$D1		# d1 += h0*r1

	vpmuludq	$H1,$R2,$M3
	vpmuludq	$H1,$R3,$M4
	vpmuludq	$H1,$S4,$M0
	vpmuludq	$H0,$R2,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h1*r2
	vpaddq		$M4,$D4,$D4		# d4 += h1*r3
	vpaddq		$M0,$D0,$D0		# d0 += h1*s4
	vpaddq		$M2,$D2,$D2		# d2 += h0*r2

	  vpunpcklqdq	$T4,$T3,$T0		# transpose input
	  vpunpckhqdq	$T4,$T3,$T4

	vpmuludq	$H3,$R0,$M3
	vpmuludq	$H3,$R1,$M4
	vpmuludq	$H1,$R0,$M1
	vpmuludq	$H1,$R1,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h3*r0
	vpaddq		$M4,$D4,$D4		# d4 += h3*r1
	vpaddq		$M1,$D1,$D1		# d1 += h1*r0
	vpaddq		$M2,$D2,$D2		# d2 += h1*r1

	vpmuludq	$H4,$S4,$M3
	vpmuludq	$H4,$R0,$M4
	vpmuludq	$H3,$S2,$M0
	vpmuludq	$H3,$S3,$M1
	vpaddq		$M3,$D3,$D3		# d3 += h4*s4
	vpmuludq	$H3,$S4,$M2
	vpaddq		$M4,$D4,$D4		# d4 += h4*r0
	vpaddq		$M0,$D0,$D0		# d0 += h3*s2
	vpaddq		$M1,$D1,$D1		# d1 += h3*s3
	vpaddq		$M2,$D2,$D2		# d2 += h3*s4

	vpmuludq	$H4,$S1,$M0
	vpmuludq	$H4,$S2,$M1
	vpmuludq	$H4,$S3,$M2
	vpaddq		$M0,$D0,$H0		# h0 = d0 + h4*s1
	vpaddq		$M1,$D1,$H1		# h1 = d2 + h4*s2
	vpaddq		$M2,$D2,$H2		# h2 = d3 + h4*s3

	################################################################
	# lazy reduction (interleaved with input splat)

	 vpsrlq		\$52,$T0,$T2		# splat input
	 vpsllq		\$12,$T4,$T3

	vpsrlq		\$26,$D3,$H3
	vpandq		$MASK,$D3,$D3
	vpaddq		$H3,$D4,$H4		# h3 -> h4

	 vporq		$T3,$T2,$T2

	vpsrlq		\$26,$H0,$D0
	vpandq		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	 vpandq		$MASK,$T2,$T2		# 2

	vpsrlq		\$26,$H4,$D4
	vpandq		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpandq		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	 vpaddq		$T2,$H2,$H2		# modulo-scheduled
	 vpsrlq		\$26,$T0,$T1

	vpsrlq		\$26,$H2,$D2
	vpandq		$MASK,$H2,$H2
	vpaddq		$D2,$D3,$H3		# h2 -> h3

	 vpsrlq		\$14,$T4,$T3

	vpsrlq		\$26,$H0,$D0
	vpandq		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	 vpsrlq		\$40,$T4,$T4		# 4

	vpsrlq		\$26,$H3,$D3
	vpandq		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	 vpandq		$MASK,$T0,$T0		# 0
	 #vpandq	$MASK,$T1,$T1		# 1
	 #vpandq	$MASK,$T3,$T3		# 3
	 #vporq		$PADBIT,$T4,$T4		# padbit, yes, always

	sub		\$128,$len
	ja		.Loop_avx512

.Ltail_avx512:
	################################################################
	# while above multiplications were by r^8 in all lanes, in last
	# iteration we multiply least significant lane by r^8 and most
	# significant one by r, that's why table gets shifted...

	vpsrlq		\$32,$R0,$R0		# 0105020603070408
	vpsrlq		\$32,$R1,$R1
	vpsrlq		\$32,$R2,$R2
	vpsrlq		\$32,$S3,$S3
	vpsrlq		\$32,$S4,$S4
	vpsrlq		\$32,$R3,$R3
	vpsrlq		\$32,$R4,$R4
	vpsrlq		\$32,$S1,$S1
	vpsrlq		\$32,$S2,$S2

	################################################################
	# load either next or last 64 byte of input
	lea		($inp,$len),$inp

	#vpaddq		$H2,$T2,$H2		# accumulate input
	vpaddq		$H0,$T0,$H0

	vpmuludq	$H2,$R1,$D3		# d3 = h2*r1
	vpmuludq	$H2,$R2,$D4		# d4 = h2*r2
	vpmuludq	$H2,$S3,$D0		# d0 = h2*s3
	 vpandq		$MASK,$T1,$T1		# 1
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4
	 vpandq		$MASK,$T3,$T3		# 3
	vpmuludq	$H2,$R0,$D2		# d2 = h2*r0
	 vporq		$PADBIT,$T4,$T4		# padbit, yes, always
	 vpaddq		$H1,$T1,$H1		# accumulate input
	 vpaddq		$H3,$T3,$H3
	 vpaddq		$H4,$T4,$H4

	  vmovdqu	16*0($inp),%x#$T0
	vpmuludq	$H0,$R3,$M3
	vpmuludq	$H0,$R4,$M4
	vpmuludq	$H0,$R0,$M0
	vpmuludq	$H0,$R1,$M1
	vpaddq		$M3,$D3,$D3		# d3 += h0*r3
	vpaddq		$M4,$D4,$D4		# d4 += h0*r4
	vpaddq		$M0,$D0,$D0		# d0 += h0*r0
	vpaddq		$M1,$D1,$D1		# d1 += h0*r1

	  vmovdqu	16*1($inp),%x#$T1
	vpmuludq	$H1,$R2,$M3
	vpmuludq	$H1,$R3,$M4
	vpmuludq	$H1,$S4,$M0
	vpmuludq	$H0,$R2,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h1*r2
	vpaddq		$M4,$D4,$D4		# d4 += h1*r3
	vpaddq		$M0,$D0,$D0		# d0 += h1*s4
	vpaddq		$M2,$D2,$D2		# d2 += h0*r2

	  vinserti128	\$1,16*2($inp),%y#$T0,%y#$T0
	vpmuludq	$H3,$R0,$M3
	vpmuludq	$H3,$R1,$M4
	vpmuludq	$H1,$R0,$M1
	vpmuludq	$H1,$R1,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h3*r0
	vpaddq		$M4,$D4,$D4		# d4 += h3*r1
	vpaddq		$M1,$D1,$D1		# d1 += h1*r0
	vpaddq		$M2,$D2,$D2		# d2 += h1*r1

	  vinserti128	\$1,16*3($inp),%y#$T1,%y#$T1
	vpmuludq	$H4,$S4,$M3
	vpmuludq	$H4,$R0,$M4
	vpmuludq	$H3,$S2,$M0
	vpmuludq	$H3,$S3,$M1
	vpmuludq	$H3,$S4,$M2
	vpaddq		$M3,$D3,$H3		# h3 = d3 + h4*s4
	vpaddq		$M4,$D4,$D4		# d4 += h4*r0
	vpaddq		$M0,$D0,$D0		# d0 += h3*s2
	vpaddq		$M1,$D1,$D1		# d1 += h3*s3
	vpaddq		$M2,$D2,$D2		# d2 += h3*s4

	vpmuludq	$H4,$S1,$M0
	vpmuludq	$H4,$S2,$M1
	vpmuludq	$H4,$S3,$M2
	vpaddq		$M0,$D0,$H0		# h0 = d0 + h4*s1
	vpaddq		$M1,$D1,$H1		# h1 = d2 + h4*s2
	vpaddq		$M2,$D2,$H2		# h2 = d3 + h4*s3

	################################################################
	# horizontal addition

	mov		\$1,%eax
	vpermq		\$0xb1,$H3,$D3
	vpermq		\$0xb1,$D4,$H4
	vpermq		\$0xb1,$H0,$D0
	vpermq		\$0xb1,$H1,$D1
	vpermq		\$0xb1,$H2,$D2
	vpaddq		$D3,$H3,$H3
	vpaddq		$D4,$H4,$H4
	vpaddq		$D0,$H0,$H0
	vpaddq		$D1,$H1,$H1
	vpaddq		$D2,$H2,$H2

	kmovw		%eax,%k3
	vpermq		\$0x2,$H3,$D3
	vpermq		\$0x2,$H4,$D4
	vpermq		\$0x2,$H0,$D0
	vpermq		\$0x2,$H1,$D1
	vpermq		\$0x2,$H2,$D2
	vpaddq		$D3,$H3,$H3
	vpaddq		$D4,$H4,$H4
	vpaddq		$D0,$H0,$H0
	vpaddq		$D1,$H1,$H1
	vpaddq		$D2,$H2,$H2

	vextracti64x4	\$0x1,$H3,%y#$D3
	vextracti64x4	\$0x1,$H4,%y#$D4
	vextracti64x4	\$0x1,$H0,%y#$D0
	vextracti64x4	\$0x1,$H1,%y#$D1
	vextracti64x4	\$0x1,$H2,%y#$D2
	vpaddq		$D3,$H3,${H3}{%k3}{z}	# keep single qword in case
	vpaddq		$D4,$H4,${H4}{%k3}{z}	# it's passed to .Ltail_avx2
	vpaddq		$D0,$H0,${H0}{%k3}{z}
	vpaddq		$D1,$H1,${H1}{%k3}{z}
	vpaddq		$D2,$H2,${H2}{%k3}{z}
___
map(s/%z/%y/,($T0,$T1,$T2,$T3,$T4, $PADBIT));
map(s/%z/%y/,($H0,$H1,$H2,$H3,$H4, $D0,$D1,$D2,$D3,$D4, $MASK));
$code.=<<___;
	################################################################
	# lazy reduction (interleaved with input splat)

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	 vpsrldq	\$6,$T0,$T2		# splat input
	 vpsrldq	\$6,$T1,$T3
	 vpunpckhqdq	$T1,$T0,$T4		# 4
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	 vpunpcklqdq	$T3,$T2,$T2		# 2:3
	 vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D4
	vpand		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	 vpsrlq		\$30,$T2,$T3
	 vpsrlq		\$4,$T2,$T2
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	 vpsrlq		\$26,$T0,$T1
	 vpsrlq		\$40,$T4,$T4		# 4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	 vpand		$MASK,$T2,$T2		# 2
	 vpand		$MASK,$T0,$T0		# 0
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	 vpaddq		$H2,$T2,$H2		# accumulate input for .Ltail_avx2
	 vpand		$MASK,$T1,$T1		# 1
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	 vpand		$MASK,$T3,$T3		# 3
	 vpor		32(%rcx),$T4,$T4	# padbit, yes, always
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	lea		0x90(%rsp),%rax		# size optimization for .Ltail_avx2
	add		\$64,$len
	jnz		.Ltail_avx2$suffix

	vpsubq		$T2,$H2,$H2		# undo input accumulation
	vmovd		%x#$H0,`4*0-48-64`($ctx)# save partially reduced
	vmovd		%x#$H1,`4*1-48-64`($ctx)
	vmovd		%x#$H2,`4*2-48-64`($ctx)
	vmovd		%x#$H3,`4*3-48-64`($ctx)
	vmovd		%x#$H4,`4*4-48-64`($ctx)
	vzeroall
___
$code.=<<___	if ($win64);
	movdqa		-0xb0(%r10),%xmm6
	movdqa		-0xa0(%r10),%xmm7
	movdqa		-0x90(%r10),%xmm8
	movdqa		-0x80(%r10),%xmm9
	movdqa		-0x70(%r10),%xmm10
	movdqa		-0x60(%r10),%xmm11
	movdqa		-0x50(%r10),%xmm12
	movdqa		-0x40(%r10),%xmm13
	movdqa		-0x30(%r10),%xmm14
	movdqa		-0x20(%r10),%xmm15
	lea		-8(%r10),%rsp
.Ldo_avx512_epilogue:
___
$code.=<<___	if (!$win64);
	lea		-8(%r10),%rsp
.cfi_def_cfa_register	%rsp
___
$code.=<<___;
	RET
.cfi_endproc
___

}

}

&declare_function("poly1305_blocks_avx2", 32, 4);
poly1305_blocks_avxN(0);
&end_function("poly1305_blocks_avx2");

#######################################################################
if ($avx>2) {
# On entry we have input length divisible by 64. But since inner loop
# processes 128 bytes per iteration, cases when length is not divisible
# by 128 are handled by passing tail 64 bytes to .Ltail_avx2. For this
# reason stack layout is kept identical to poly1305_blocks_avx2. If not
# for this tail, we wouldn't have to even allocate stack frame...

if($kernel) {
	$code .= "#ifdef CONFIG_AS_AVX512\n";
}

&declare_function("poly1305_blocks_avx512", 32, 4);
poly1305_blocks_avxN(1);
&end_function("poly1305_blocks_avx512");

if ($kernel) {
	$code .= "#endif\n";
}

if (!$kernel && $avx>3) {
########################################################################
# VPMADD52 version using 2^44 radix.
#
# One can argue that base 2^52 would be more natural. Well, even though
# some operations would be more natural, one has to recognize couple of
# things. Base 2^52 doesn't provide advantage over base 2^44 if you look
# at amount of multiply-n-accumulate operations. Secondly, it makes it
# impossible to pre-compute multiples of 5 [referred to as s[]/sN in
# reference implementations], which means that more such operations
# would have to be performed in inner loop, which in turn makes critical
# path longer. In other words, even though base 2^44 reduction might
# look less elegant, overall critical path is actually shorter...

########################################################################
# Layout of opaque area is following.
#
#	unsigned __int64 h[3];		# current hash value base 2^44
#	unsigned __int64 s[2];		# key value*20 base 2^44
#	unsigned __int64 r[3];		# key value base 2^44
#	struct { unsigned __int64 r^1, r^3, r^2, r^4; } R[4];
#					# r^n positions reflect
#					# placement in register, not
#					# memory, R[3] is R[1]*20

$code.=<<___;
.type	poly1305_init_base2_44,\@function,3
.align	32
poly1305_init_base2_44:
	xor	%eax,%eax
	mov	%rax,0($ctx)		# initialize hash value
	mov	%rax,8($ctx)
	mov	%rax,16($ctx)

.Linit_base2_44:
	lea	poly1305_blocks_vpmadd52(%rip),%r10
	lea	poly1305_emit_base2_44(%rip),%r11

	mov	\$0x0ffffffc0fffffff,%rax
	mov	\$0x0ffffffc0ffffffc,%rcx
	and	0($inp),%rax
	mov	\$0x00000fffffffffff,%r8
	and	8($inp),%rcx
	mov	\$0x00000fffffffffff,%r9
	and	%rax,%r8
	shrd	\$44,%rcx,%rax
	mov	%r8,40($ctx)		# r0
	and	%r9,%rax
	shr	\$24,%rcx
	mov	%rax,48($ctx)		# r1
	lea	(%rax,%rax,4),%rax	# *5
	mov	%rcx,56($ctx)		# r2
	shl	\$2,%rax		# magic <<2
	lea	(%rcx,%rcx,4),%rcx	# *5
	shl	\$2,%rcx		# magic <<2
	mov	%rax,24($ctx)		# s1
	mov	%rcx,32($ctx)		# s2
	movq	\$-1,64($ctx)		# write impossible value
___
$code.=<<___	if ($flavour !~ /elf32/);
	mov	%r10,0(%rdx)
	mov	%r11,8(%rdx)
___
$code.=<<___	if ($flavour =~ /elf32/);
	mov	%r10d,0(%rdx)
	mov	%r11d,4(%rdx)
___
$code.=<<___;
	mov	\$1,%eax
	RET
.size	poly1305_init_base2_44,.-poly1305_init_base2_44
___
{
my ($H0,$H1,$H2,$r2r1r0,$r1r0s2,$r0s2s1,$Dlo,$Dhi) = map("%ymm$_",(0..5,16,17));
my ($T0,$inp_permd,$inp_shift,$PAD) = map("%ymm$_",(18..21));
my ($reduc_mask,$reduc_rght,$reduc_left) = map("%ymm$_",(22..25));

$code.=<<___;
.type	poly1305_blocks_vpmadd52,\@function,4
.align	32
poly1305_blocks_vpmadd52:
	shr	\$4,$len
	jz	.Lno_data_vpmadd52		# too short

	shl	\$40,$padbit
	mov	64($ctx),%r8			# peek on power of the key

	# if powers of the key are not calculated yet, process up to 3
	# blocks with this single-block subroutine, otherwise ensure that
	# length is divisible by 2 blocks and pass the rest down to next
	# subroutine...

	mov	\$3,%rax
	mov	\$1,%r10
	cmp	\$4,$len			# is input long
	cmovae	%r10,%rax
	test	%r8,%r8				# is power value impossible?
	cmovns	%r10,%rax

	and	$len,%rax			# is input of favourable length?
	jz	.Lblocks_vpmadd52_4x

	sub		%rax,$len
	mov		\$7,%r10d
	mov		\$1,%r11d
	kmovw		%r10d,%k7
	lea		.L2_44_inp_permd(%rip),%r10
	kmovw		%r11d,%k1

	vmovq		$padbit,%x#$PAD
	vmovdqa64	0(%r10),$inp_permd	# .L2_44_inp_permd
	vmovdqa64	32(%r10),$inp_shift	# .L2_44_inp_shift
	vpermq		\$0xcf,$PAD,$PAD
	vmovdqa64	64(%r10),$reduc_mask	# .L2_44_mask

	vmovdqu64	0($ctx),${Dlo}{%k7}{z}		# load hash value
	vmovdqu64	40($ctx),${r2r1r0}{%k7}{z}	# load keys
	vmovdqu64	32($ctx),${r1r0s2}{%k7}{z}
	vmovdqu64	24($ctx),${r0s2s1}{%k7}{z}

	vmovdqa64	96(%r10),$reduc_rght	# .L2_44_shift_rgt
	vmovdqa64	128(%r10),$reduc_left	# .L2_44_shift_lft

	jmp		.Loop_vpmadd52

.align	32
.Loop_vpmadd52:
	vmovdqu32	0($inp),%x#$T0		# load input as ----3210
	lea		16($inp),$inp

	vpermd		$T0,$inp_permd,$T0	# ----3210 -> --322110
	vpsrlvq		$inp_shift,$T0,$T0
	vpandq		$reduc_mask,$T0,$T0
	vporq		$PAD,$T0,$T0

	vpaddq		$T0,$Dlo,$Dlo		# accumulate input

	vpermq		\$0,$Dlo,${H0}{%k7}{z}	# smash hash value
	vpermq		\$0b01010101,$Dlo,${H1}{%k7}{z}
	vpermq		\$0b10101010,$Dlo,${H2}{%k7}{z}

	vpxord		$Dlo,$Dlo,$Dlo
	vpxord		$Dhi,$Dhi,$Dhi

	vpmadd52luq	$r2r1r0,$H0,$Dlo
	vpmadd52huq	$r2r1r0,$H0,$Dhi

	vpmadd52luq	$r1r0s2,$H1,$Dlo
	vpmadd52huq	$r1r0s2,$H1,$Dhi

	vpmadd52luq	$r0s2s1,$H2,$Dlo
	vpmadd52huq	$r0s2s1,$H2,$Dhi

	vpsrlvq		$reduc_rght,$Dlo,$T0	# 0 in topmost qword
	vpsllvq		$reduc_left,$Dhi,$Dhi	# 0 in topmost qword
	vpandq		$reduc_mask,$Dlo,$Dlo

	vpaddq		$T0,$Dhi,$Dhi

	vpermq		\$0b10010011,$Dhi,$Dhi	# 0 in lowest qword

	vpaddq		$Dhi,$Dlo,$Dlo		# note topmost qword :-)

	vpsrlvq		$reduc_rght,$Dlo,$T0	# 0 in topmost word
	vpandq		$reduc_mask,$Dlo,$Dlo

	vpermq		\$0b10010011,$T0,$T0

	vpaddq		$T0,$Dlo,$Dlo

	vpermq		\$0b10010011,$Dlo,${T0}{%k1}{z}

	vpaddq		$T0,$Dlo,$Dlo
	vpsllq		\$2,$T0,$T0

	vpaddq		$T0,$Dlo,$Dlo

	dec		%rax			# len-=16
	jnz		.Loop_vpmadd52

	vmovdqu64	$Dlo,0($ctx){%k7}	# store hash value

	test		$len,$len
	jnz		.Lblocks_vpmadd52_4x

.Lno_data_vpmadd52:
	RET
.size	poly1305_blocks_vpmadd52,.-poly1305_blocks_vpmadd52
___
}
{
########################################################################
# As implied by its name 4x subroutine processes 4 blocks in parallel
# (but handles even 4*n+2 blocks lengths). It takes up to 4th key power
# and is handled in 256-bit %ymm registers.

my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17));
my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23));
my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31));

$code.=<<___;
.type	poly1305_blocks_vpmadd52_4x,\@function,4
.align	32
poly1305_blocks_vpmadd52_4x:
	shr	\$4,$len
	jz	.Lno_data_vpmadd52_4x		# too short

	shl	\$40,$padbit
	mov	64($ctx),%r8			# peek on power of the key

.Lblocks_vpmadd52_4x:
	vpbroadcastq	$padbit,$PAD

	vmovdqa64	.Lx_mask44(%rip),$mask44
	mov		\$5,%eax
	vmovdqa64	.Lx_mask42(%rip),$mask42
	kmovw		%eax,%k1		# used in 2x path

	test		%r8,%r8			# is power value impossible?
	js		.Linit_vpmadd52		# if it is, then init R[4]

	vmovq		0($ctx),%x#$H0		# load current hash value
	vmovq		8($ctx),%x#$H1
	vmovq		16($ctx),%x#$H2

	test		\$3,$len		# is length 4*n+2?
	jnz		.Lblocks_vpmadd52_2x_do

.Lblocks_vpmadd52_4x_do:
	vpbroadcastq	64($ctx),$R0		# load 4th power of the key
	vpbroadcastq	96($ctx),$R1
	vpbroadcastq	128($ctx),$R2
	vpbroadcastq	160($ctx),$S1

.Lblocks_vpmadd52_4x_key_loaded:
	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S2,$S2

	test		\$7,$len		# is len 8*n?
	jz		.Lblocks_vpmadd52_8x

	vmovdqu64	16*0($inp),$T2		# load data
	vmovdqu64	16*2($inp),$T3
	lea		16*4($inp),$inp

	vpunpcklqdq	$T3,$T2,$T1		# transpose data
	vpunpckhqdq	$T3,$T2,$T3

	# at this point 64-bit lanes are ordered as 3-1-2-0

	vpsrlq		\$24,$T3,$T2		# splat the data
	vporq		$PAD,$T2,$T2
	 vpaddq		$T2,$H2,$H2		# accumulate input
	vpandq		$mask44,$T1,$T0
	vpsrlq		\$44,$T1,$T1
	vpsllq		\$20,$T3,$T3
	vporq		$T3,$T1,$T1
	vpandq		$mask44,$T1,$T1

	sub		\$4,$len
	jz		.Ltail_vpmadd52_4x
	jmp		.Loop_vpmadd52_4x
	ud2

.align	32
.Linit_vpmadd52:
	vmovq		24($ctx),%x#$S1		# load key
	vmovq		56($ctx),%x#$H2
	vmovq		32($ctx),%x#$S2
	vmovq		40($ctx),%x#$R0
	vmovq		48($ctx),%x#$R1

	vmovdqa		$R0,$H0
	vmovdqa		$R1,$H1
	vmovdqa		$H2,$R2

	mov		\$2,%eax

.Lmul_init_vpmadd52:
	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	dec		%eax
	jz		.Ldone_init_vpmadd52

	vpunpcklqdq	$R1,$H1,$R1		# 1,2
	vpbroadcastq	%x#$H1,%x#$H1		# 2,2
	vpunpcklqdq	$R2,$H2,$R2
	vpbroadcastq	%x#$H2,%x#$H2
	vpunpcklqdq	$R0,$H0,$R0
	vpbroadcastq	%x#$H0,%x#$H0

	vpsllq		\$2,$R1,$S1		# S1 = R1*5*4
	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R1,$S1,$S1
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S1,$S1
	vpsllq		\$2,$S2,$S2

	jmp		.Lmul_init_vpmadd52
	ud2

.align	32
.Ldone_init_vpmadd52:
	vinserti128	\$1,%x#$R1,$H1,$R1	# 1,2,3,4
	vinserti128	\$1,%x#$R2,$H2,$R2
	vinserti128	\$1,%x#$R0,$H0,$R0

	vpermq		\$0b11011000,$R1,$R1	# 1,3,2,4
	vpermq		\$0b11011000,$R2,$R2
	vpermq		\$0b11011000,$R0,$R0

	vpsllq		\$2,$R1,$S1		# S1 = R1*5*4
	vpaddq		$R1,$S1,$S1
	vpsllq		\$2,$S1,$S1

	vmovq		0($ctx),%x#$H0		# load current hash value
	vmovq		8($ctx),%x#$H1
	vmovq		16($ctx),%x#$H2

	test		\$3,$len		# is length 4*n+2?
	jnz		.Ldone_init_vpmadd52_2x

	vmovdqu64	$R0,64($ctx)		# save key powers
	vpbroadcastq	%x#$R0,$R0		# broadcast 4th power
	vmovdqu64	$R1,96($ctx)
	vpbroadcastq	%x#$R1,$R1
	vmovdqu64	$R2,128($ctx)
	vpbroadcastq	%x#$R2,$R2
	vmovdqu64	$S1,160($ctx)
	vpbroadcastq	%x#$S1,$S1

	jmp		.Lblocks_vpmadd52_4x_key_loaded
	ud2

.align	32
.Ldone_init_vpmadd52_2x:
	vmovdqu64	$R0,64($ctx)		# save key powers
	vpsrldq		\$8,$R0,$R0		# 0-1-0-2
	vmovdqu64	$R1,96($ctx)
	vpsrldq		\$8,$R1,$R1
	vmovdqu64	$R2,128($ctx)
	vpsrldq		\$8,$R2,$R2
	vmovdqu64	$S1,160($ctx)
	vpsrldq		\$8,$S1,$S1
	jmp		.Lblocks_vpmadd52_2x_key_loaded
	ud2

.align	32
.Lblocks_vpmadd52_2x_do:
	vmovdqu64	128+8($ctx),${R2}{%k1}{z}# load 2nd and 1st key powers
	vmovdqu64	160+8($ctx),${S1}{%k1}{z}
	vmovdqu64	64+8($ctx),${R0}{%k1}{z}
	vmovdqu64	96+8($ctx),${R1}{%k1}{z}

.Lblocks_vpmadd52_2x_key_loaded:
	vmovdqu64	16*0($inp),$T2		# load data
	vpxorq		$T3,$T3,$T3
	lea		16*2($inp),$inp

	vpunpcklqdq	$T3,$T2,$T1		# transpose data
	vpunpckhqdq	$T3,$T2,$T3

	# at this point 64-bit lanes are ordered as x-1-x-0

	vpsrlq		\$24,$T3,$T2		# splat the data
	vporq		$PAD,$T2,$T2
	 vpaddq		$T2,$H2,$H2		# accumulate input
	vpandq		$mask44,$T1,$T0
	vpsrlq		\$44,$T1,$T1
	vpsllq		\$20,$T3,$T3
	vporq		$T3,$T1,$T1
	vpandq		$mask44,$T1,$T1

	jmp		.Ltail_vpmadd52_2x
	ud2

.align	32
.Loop_vpmadd52_4x:
	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	 vmovdqu64	16*0($inp),$T2		# load data
	 vmovdqu64	16*2($inp),$T3
	 lea		16*4($inp),$inp
	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	 vpunpcklqdq	$T3,$T2,$T1		# transpose data
	 vpunpckhqdq	$T3,$T2,$T3
	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# partial reduction (interleaved with data splat)
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	 vpsrlq		\$24,$T3,$T2
	 vporq		$PAD,$T2,$T2
	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	 vpandq		$mask44,$T1,$T0
	 vpsrlq		\$44,$T1,$T1
	 vpsllq		\$20,$T3,$T3
	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	  vpaddq	$T2,$H2,$H2		# accumulate input
	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	 vporq		$T3,$T1,$T1
	 vpandq		$mask44,$T1,$T1

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	sub		\$4,$len		# len-=64
	jnz		.Loop_vpmadd52_4x

.Ltail_vpmadd52_4x:
	vmovdqu64	128($ctx),$R2		# load all key powers
	vmovdqu64	160($ctx),$S1
	vmovdqu64	64($ctx),$R0
	vmovdqu64	96($ctx),$R1

.Ltail_vpmadd52_2x:
	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S2,$S2

	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# horizontal addition

	mov		\$1,%eax
	kmovw		%eax,%k1
	vpsrldq		\$8,$D0lo,$T0
	vpsrldq		\$8,$D0hi,$H0
	vpsrldq		\$8,$D1lo,$T1
	vpsrldq		\$8,$D1hi,$H1
	vpaddq		$T0,$D0lo,$D0lo
	vpaddq		$H0,$D0hi,$D0hi
	vpsrldq		\$8,$D2lo,$T2
	vpsrldq		\$8,$D2hi,$H2
	vpaddq		$T1,$D1lo,$D1lo
	vpaddq		$H1,$D1hi,$D1hi
	 vpermq		\$0x2,$D0lo,$T0
	 vpermq		\$0x2,$D0hi,$H0
	vpaddq		$T2,$D2lo,$D2lo
	vpaddq		$H2,$D2hi,$D2hi

	vpermq		\$0x2,$D1lo,$T1
	vpermq		\$0x2,$D1hi,$H1
	vpaddq		$T0,$D0lo,${D0lo}{%k1}{z}
	vpaddq		$H0,$D0hi,${D0hi}{%k1}{z}
	vpermq		\$0x2,$D2lo,$T2
	vpermq		\$0x2,$D2hi,$H2
	vpaddq		$T1,$D1lo,${D1lo}{%k1}{z}
	vpaddq		$H1,$D1hi,${D1hi}{%k1}{z}
	vpaddq		$T2,$D2lo,${D2lo}{%k1}{z}
	vpaddq		$H2,$D2hi,${D2hi}{%k1}{z}

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1
						# at this point $len is
						# either 4*n+2 or 0...
	sub		\$2,$len		# len-=32
	ja		.Lblocks_vpmadd52_4x_do

	vmovq		%x#$H0,0($ctx)
	vmovq		%x#$H1,8($ctx)
	vmovq		%x#$H2,16($ctx)
	vzeroall

.Lno_data_vpmadd52_4x:
	RET
.size	poly1305_blocks_vpmadd52_4x,.-poly1305_blocks_vpmadd52_4x
___
}
{
########################################################################
# As implied by its name 8x subroutine processes 8 blocks in parallel...
# This is intermediate version, as it's used only in cases when input
# length is either 8*n, 8*n+1 or 8*n+2...

my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17));
my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23));
my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31));
my ($RR0,$RR1,$RR2,$SS1,$SS2) = map("%ymm$_",(6..10));

$code.=<<___;
.type	poly1305_blocks_vpmadd52_8x,\@function,4
.align	32
poly1305_blocks_vpmadd52_8x:
	shr	\$4,$len
	jz	.Lno_data_vpmadd52_8x		# too short

	shl	\$40,$padbit
	mov	64($ctx),%r8			# peek on power of the key

	vmovdqa64	.Lx_mask44(%rip),$mask44
	vmovdqa64	.Lx_mask42(%rip),$mask42

	test	%r8,%r8				# is power value impossible?
	js	.Linit_vpmadd52			# if it is, then init R[4]

	vmovq	0($ctx),%x#$H0			# load current hash value
	vmovq	8($ctx),%x#$H1
	vmovq	16($ctx),%x#$H2

.Lblocks_vpmadd52_8x:
	################################################################
	# fist we calculate more key powers

	vmovdqu64	128($ctx),$R2		# load 1-3-2-4 powers
	vmovdqu64	160($ctx),$S1
	vmovdqu64	64($ctx),$R0
	vmovdqu64	96($ctx),$R1

	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S2,$S2

	vpbroadcastq	%x#$R2,$RR2		# broadcast 4th power
	vpbroadcastq	%x#$R0,$RR0
	vpbroadcastq	%x#$R1,$RR1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$RR2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$RR2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$RR2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$RR2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$RR2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$RR2,$R0,$D2hi

	vpmadd52luq	$RR0,$R0,$D0lo
	vpmadd52huq	$RR0,$R0,$D0hi
	vpmadd52luq	$RR0,$R1,$D1lo
	vpmadd52huq	$RR0,$R1,$D1hi
	vpmadd52luq	$RR0,$R2,$D2lo
	vpmadd52huq	$RR0,$R2,$D2hi

	vpmadd52luq	$RR1,$S2,$D0lo
	vpmadd52huq	$RR1,$S2,$D0hi
	vpmadd52luq	$RR1,$R0,$D1lo
	vpmadd52huq	$RR1,$R0,$D1hi
	vpmadd52luq	$RR1,$R1,$D2lo
	vpmadd52huq	$RR1,$R1,$D2hi

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$RR0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$RR1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$RR2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$RR0,$RR0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$RR0,$RR0

	vpsrlq		\$44,$RR0,$tmp		# additional step
	vpandq		$mask44,$RR0,$RR0

	vpaddq		$tmp,$RR1,$RR1

	################################################################
	# At this point Rx holds 1324 powers, RRx - 5768, and the goal
	# is 15263748, which reflects how data is loaded...

	vpunpcklqdq	$R2,$RR2,$T2		# 3748
	vpunpckhqdq	$R2,$RR2,$R2		# 1526
	vpunpcklqdq	$R0,$RR0,$T0
	vpunpckhqdq	$R0,$RR0,$R0
	vpunpcklqdq	$R1,$RR1,$T1
	vpunpckhqdq	$R1,$RR1,$R1
___
######## switch to %zmm
map(s/%y/%z/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2);
map(s/%y/%z/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi);
map(s/%y/%z/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD);
map(s/%y/%z/, $RR0,$RR1,$RR2,$SS1,$SS2);

$code.=<<___;
	vshufi64x2	\$0x44,$R2,$T2,$RR2	# 15263748
	vshufi64x2	\$0x44,$R0,$T0,$RR0
	vshufi64x2	\$0x44,$R1,$T1,$RR1

	vmovdqu64	16*0($inp),$T2		# load data
	vmovdqu64	16*4($inp),$T3
	lea		16*8($inp),$inp

	vpsllq		\$2,$RR2,$SS2		# S2 = R2*5*4
	vpsllq		\$2,$RR1,$SS1		# S1 = R1*5*4
	vpaddq		$RR2,$SS2,$SS2
	vpaddq		$RR1,$SS1,$SS1
	vpsllq		\$2,$SS2,$SS2
	vpsllq		\$2,$SS1,$SS1

	vpbroadcastq	$padbit,$PAD
	vpbroadcastq	%x#$mask44,$mask44
	vpbroadcastq	%x#$mask42,$mask42

	vpbroadcastq	%x#$SS1,$S1		# broadcast 8th power
	vpbroadcastq	%x#$SS2,$S2
	vpbroadcastq	%x#$RR0,$R0
	vpbroadcastq	%x#$RR1,$R1
	vpbroadcastq	%x#$RR2,$R2

	vpunpcklqdq	$T3,$T2,$T1		# transpose data
	vpunpckhqdq	$T3,$T2,$T3

	# at this point 64-bit lanes are ordered as 73625140

	vpsrlq		\$24,$T3,$T2		# splat the data
	vporq		$PAD,$T2,$T2
	 vpaddq		$T2,$H2,$H2		# accumulate input
	vpandq		$mask44,$T1,$T0
	vpsrlq		\$44,$T1,$T1
	vpsllq		\$20,$T3,$T3
	vporq		$T3,$T1,$T1
	vpandq		$mask44,$T1,$T1

	sub		\$8,$len
	jz		.Ltail_vpmadd52_8x
	jmp		.Loop_vpmadd52_8x

.align	32
.Loop_vpmadd52_8x:
	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	 vmovdqu64	16*0($inp),$T2		# load data
	 vmovdqu64	16*4($inp),$T3
	 lea		16*8($inp),$inp
	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	 vpunpcklqdq	$T3,$T2,$T1		# transpose data
	 vpunpckhqdq	$T3,$T2,$T3
	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# partial reduction (interleaved with data splat)
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	 vpsrlq		\$24,$T3,$T2
	 vporq		$PAD,$T2,$T2
	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	 vpandq		$mask44,$T1,$T0
	 vpsrlq		\$44,$T1,$T1
	 vpsllq		\$20,$T3,$T3
	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	  vpaddq	$T2,$H2,$H2		# accumulate input
	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	 vporq		$T3,$T1,$T1
	 vpandq		$mask44,$T1,$T1

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	sub		\$8,$len		# len-=128
	jnz		.Loop_vpmadd52_8x

.Ltail_vpmadd52_8x:
	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$SS1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$SS1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$SS2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$SS2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$RR0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$RR0,$D2hi

	vpmadd52luq	$H0,$RR0,$D0lo
	vpmadd52huq	$H0,$RR0,$D0hi
	vpmadd52luq	$H0,$RR1,$D1lo
	vpmadd52huq	$H0,$RR1,$D1hi
	vpmadd52luq	$H0,$RR2,$D2lo
	vpmadd52huq	$H0,$RR2,$D2hi

	vpmadd52luq	$H1,$SS2,$D0lo
	vpmadd52huq	$H1,$SS2,$D0hi
	vpmadd52luq	$H1,$RR0,$D1lo
	vpmadd52huq	$H1,$RR0,$D1hi
	vpmadd52luq	$H1,$RR1,$D2lo
	vpmadd52huq	$H1,$RR1,$D2hi

	################################################################
	# horizontal addition

	mov		\$1,%eax
	kmovw		%eax,%k1
	vpsrldq		\$8,$D0lo,$T0
	vpsrldq		\$8,$D0hi,$H0
	vpsrldq		\$8,$D1lo,$T1
	vpsrldq		\$8,$D1hi,$H1
	vpaddq		$T0,$D0lo,$D0lo
	vpaddq		$H0,$D0hi,$D0hi
	vpsrldq		\$8,$D2lo,$T2
	vpsrldq		\$8,$D2hi,$H2
	vpaddq		$T1,$D1lo,$D1lo
	vpaddq		$H1,$D1hi,$D1hi
	 vpermq		\$0x2,$D0lo,$T0
	 vpermq		\$0x2,$D0hi,$H0
	vpaddq		$T2,$D2lo,$D2lo
	vpaddq		$H2,$D2hi,$D2hi

	vpermq		\$0x2,$D1lo,$T1
	vpermq		\$0x2,$D1hi,$H1
	vpaddq		$T0,$D0lo,$D0lo
	vpaddq		$H0,$D0hi,$D0hi
	vpermq		\$0x2,$D2lo,$T2
	vpermq		\$0x2,$D2hi,$H2
	vpaddq		$T1,$D1lo,$D1lo
	vpaddq		$H1,$D1hi,$D1hi
	 vextracti64x4	\$1,$D0lo,%y#$T0
	 vextracti64x4	\$1,$D0hi,%y#$H0
	vpaddq		$T2,$D2lo,$D2lo
	vpaddq		$H2,$D2hi,$D2hi

	vextracti64x4	\$1,$D1lo,%y#$T1
	vextracti64x4	\$1,$D1hi,%y#$H1
	vextracti64x4	\$1,$D2lo,%y#$T2
	vextracti64x4	\$1,$D2hi,%y#$H2
___
######## switch back to %ymm
map(s/%z/%y/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2);
map(s/%z/%y/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi);
map(s/%z/%y/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD);

$code.=<<___;
	vpaddq		$T0,$D0lo,${D0lo}{%k1}{z}
	vpaddq		$H0,$D0hi,${D0hi}{%k1}{z}
	vpaddq		$T1,$D1lo,${D1lo}{%k1}{z}
	vpaddq		$H1,$D1hi,${D1hi}{%k1}{z}
	vpaddq		$T2,$D2lo,${D2lo}{%k1}{z}
	vpaddq		$H2,$D2hi,${D2hi}{%k1}{z}

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	################################################################

	vmovq		%x#$H0,0($ctx)
	vmovq		%x#$H1,8($ctx)
	vmovq		%x#$H2,16($ctx)
	vzeroall

.Lno_data_vpmadd52_8x:
	RET
.size	poly1305_blocks_vpmadd52_8x,.-poly1305_blocks_vpmadd52_8x
___
}
$code.=<<___;
.type	poly1305_emit_base2_44,\@function,3
.align	32
poly1305_emit_base2_44:
	mov	0($ctx),%r8	# load hash value
	mov	8($ctx),%r9
	mov	16($ctx),%r10

	mov	%r9,%rax
	shr	\$20,%r9
	shl	\$44,%rax
	mov	%r10,%rcx
	shr	\$40,%r10
	shl	\$24,%rcx

	add	%rax,%r8
	adc	%rcx,%r9
	adc	\$0,%r10

	mov	%r8,%rax
	add	\$5,%r8		# compare to modulus
	mov	%r9,%rcx
	adc	\$0,%r9
	adc	\$0,%r10
	shr	\$2,%r10	# did 130-bit value overflow?
	cmovnz	%r8,%rax
	cmovnz	%r9,%rcx

	add	0($nonce),%rax	# accumulate nonce
	adc	8($nonce),%rcx
	mov	%rax,0($mac)	# write result
	mov	%rcx,8($mac)

	RET
.size	poly1305_emit_base2_44,.-poly1305_emit_base2_44
___
}	}	}
}

if (!$kernel)
{	# chacha20-poly1305 helpers
my ($out,$inp,$otp,$len)=$win64 ? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
                                  ("%rdi","%rsi","%rdx","%rcx");  # Unix order
$code.=<<___;
.globl	xor128_encrypt_n_pad
.type	xor128_encrypt_n_pad,\@abi-omnipotent
.align	16
xor128_encrypt_n_pad:
	sub	$otp,$inp
	sub	$otp,$out
	mov	$len,%r10		# put len aside
	shr	\$4,$len		# len / 16
	jz	.Ltail_enc
	nop
.Loop_enc_xmm:
	movdqu	($inp,$otp),%xmm0
	pxor	($otp),%xmm0
	movdqu	%xmm0,($out,$otp)
	movdqa	%xmm0,($otp)
	lea	16($otp),$otp
	dec	$len
	jnz	.Loop_enc_xmm

	and	\$15,%r10		# len % 16
	jz	.Ldone_enc

.Ltail_enc:
	mov	\$16,$len
	sub	%r10,$len
	xor	%eax,%eax
.Loop_enc_byte:
	mov	($inp,$otp),%al
	xor	($otp),%al
	mov	%al,($out,$otp)
	mov	%al,($otp)
	lea	1($otp),$otp
	dec	%r10
	jnz	.Loop_enc_byte

	xor	%eax,%eax
.Loop_enc_pad:
	mov	%al,($otp)
	lea	1($otp),$otp
	dec	$len
	jnz	.Loop_enc_pad

.Ldone_enc:
	mov	$otp,%rax
	RET
.size	xor128_encrypt_n_pad,.-xor128_encrypt_n_pad

.globl	xor128_decrypt_n_pad
.type	xor128_decrypt_n_pad,\@abi-omnipotent
.align	16
xor128_decrypt_n_pad:
	sub	$otp,$inp
	sub	$otp,$out
	mov	$len,%r10		# put len aside
	shr	\$4,$len		# len / 16
	jz	.Ltail_dec
	nop
.Loop_dec_xmm:
	movdqu	($inp,$otp),%xmm0
	movdqa	($otp),%xmm1
	pxor	%xmm0,%xmm1
	movdqu	%xmm1,($out,$otp)
	movdqa	%xmm0,($otp)
	lea	16($otp),$otp
	dec	$len
	jnz	.Loop_dec_xmm

	pxor	%xmm1,%xmm1
	and	\$15,%r10		# len % 16
	jz	.Ldone_dec

.Ltail_dec:
	mov	\$16,$len
	sub	%r10,$len
	xor	%eax,%eax
	xor	%r11d,%r11d
.Loop_dec_byte:
	mov	($inp,$otp),%r11b
	mov	($otp),%al
	xor	%r11b,%al
	mov	%al,($out,$otp)
	mov	%r11b,($otp)
	lea	1($otp),$otp
	dec	%r10
	jnz	.Loop_dec_byte

	xor	%eax,%eax
.Loop_dec_pad:
	mov	%al,($otp)
	lea	1($otp),$otp
	dec	$len
	jnz	.Loop_dec_pad

.Ldone_dec:
	mov	$otp,%rax
	RET
.size	xor128_decrypt_n_pad,.-xor128_decrypt_n_pad
___
}

# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";

$code.=<<___;
.extern	__imp_RtlVirtualUnwind
.type	se_handler,\@abi-omnipotent
.align	16
se_handler:
	push	%rsi
	push	%rdi
	push	%rbx
	push	%rbp
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	pushfq
	sub	\$64,%rsp

	mov	120($context),%rax	# pull context->Rax
	mov	248($context),%rbx	# pull context->Rip

	mov	8($disp),%rsi		# disp->ImageBase
	mov	56($disp),%r11		# disp->HandlerData

	mov	0(%r11),%r10d		# HandlerData[0]
	lea	(%rsi,%r10),%r10	# prologue label
	cmp	%r10,%rbx		# context->Rip<.Lprologue
	jb	.Lcommon_seh_tail

	mov	152($context),%rax	# pull context->Rsp

	mov	4(%r11),%r10d		# HandlerData[1]
	lea	(%rsi,%r10),%r10	# epilogue label
	cmp	%r10,%rbx		# context->Rip>=.Lepilogue
	jae	.Lcommon_seh_tail

	lea	48(%rax),%rax

	mov	-8(%rax),%rbx
	mov	-16(%rax),%rbp
	mov	-24(%rax),%r12
	mov	-32(%rax),%r13
	mov	-40(%rax),%r14
	mov	-48(%rax),%r15
	mov	%rbx,144($context)	# restore context->Rbx
	mov	%rbp,160($context)	# restore context->Rbp
	mov	%r12,216($context)	# restore context->R12
	mov	%r13,224($context)	# restore context->R13
	mov	%r14,232($context)	# restore context->R14
	mov	%r15,240($context)	# restore context->R14

	jmp	.Lcommon_seh_tail
.size	se_handler,.-se_handler

.type	avx_handler,\@abi-omnipotent
.align	16
avx_handler:
	push	%rsi
	push	%rdi
	push	%rbx
	push	%rbp
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	pushfq
	sub	\$64,%rsp

	mov	120($context),%rax	# pull context->Rax
	mov	248($context),%rbx	# pull context->Rip

	mov	8($disp),%rsi		# disp->ImageBase
	mov	56($disp),%r11		# disp->HandlerData

	mov	0(%r11),%r10d		# HandlerData[0]
	lea	(%rsi,%r10),%r10	# prologue label
	cmp	%r10,%rbx		# context->Rip<prologue label
	jb	.Lcommon_seh_tail

	mov	152($context),%rax	# pull context->Rsp

	mov	4(%r11),%r10d		# HandlerData[1]
	lea	(%rsi,%r10),%r10	# epilogue label
	cmp	%r10,%rbx		# context->Rip>=epilogue label
	jae	.Lcommon_seh_tail

	mov	208($context),%rax	# pull context->R11

	lea	0x50(%rax),%rsi
	lea	0xf8(%rax),%rax
	lea	512($context),%rdi	# &context.Xmm6
	mov	\$20,%ecx
	.long	0xa548f3fc		# cld; rep movsq

.Lcommon_seh_tail:
	mov	8(%rax),%rdi
	mov	16(%rax),%rsi
	mov	%rax,152($context)	# restore context->Rsp
	mov	%rsi,168($context)	# restore context->Rsi
	mov	%rdi,176($context)	# restore context->Rdi

	mov	40($disp),%rdi		# disp->ContextRecord
	mov	$context,%rsi		# context
	mov	\$154,%ecx		# sizeof(CONTEXT)
	.long	0xa548f3fc		# cld; rep movsq

	mov	$disp,%rsi
	xor	%ecx,%ecx		# arg1, UNW_FLAG_NHANDLER
	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
	mov	0(%rsi),%r8		# arg3, disp->ControlPc
	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
	mov	40(%rsi),%r10		# disp->ContextRecord
	lea	56(%rsi),%r11		# &disp->HandlerData
	lea	24(%rsi),%r12		# &disp->EstablisherFrame
	mov	%r10,32(%rsp)		# arg5
	mov	%r11,40(%rsp)		# arg6
	mov	%r12,48(%rsp)		# arg7
	mov	%rcx,56(%rsp)		# arg8, (NULL)
	call	*__imp_RtlVirtualUnwind(%rip)

	mov	\$1,%eax		# ExceptionContinueSearch
	add	\$64,%rsp
	popfq
	pop	%r15
	pop	%r14
	pop	%r13
	pop	%r12
	pop	%rbp
	pop	%rbx
	pop	%rdi
	pop	%rsi
	RET
.size	avx_handler,.-avx_handler

.section	.pdata
.align	4
	.rva	.LSEH_begin_poly1305_init_x86_64
	.rva	.LSEH_end_poly1305_init_x86_64
	.rva	.LSEH_info_poly1305_init_x86_64

	.rva	.LSEH_begin_poly1305_blocks_x86_64
	.rva	.LSEH_end_poly1305_blocks_x86_64
	.rva	.LSEH_info_poly1305_blocks_x86_64

	.rva	.LSEH_begin_poly1305_emit_x86_64
	.rva	.LSEH_end_poly1305_emit_x86_64
	.rva	.LSEH_info_poly1305_emit_x86_64
___
$code.=<<___ if ($avx);
	.rva	.LSEH_begin_poly1305_blocks_avx
	.rva	.Lbase2_64_avx
	.rva	.LSEH_info_poly1305_blocks_avx_1

	.rva	.Lbase2_64_avx
	.rva	.Leven_avx
	.rva	.LSEH_info_poly1305_blocks_avx_2

	.rva	.Leven_avx
	.rva	.LSEH_end_poly1305_blocks_avx
	.rva	.LSEH_info_poly1305_blocks_avx_3

	.rva	.LSEH_begin_poly1305_emit_avx
	.rva	.LSEH_end_poly1305_emit_avx
	.rva	.LSEH_info_poly1305_emit_avx
___
$code.=<<___ if ($avx>1);
	.rva	.LSEH_begin_poly1305_blocks_avx2
	.rva	.Lbase2_64_avx2
	.rva	.LSEH_info_poly1305_blocks_avx2_1

	.rva	.Lbase2_64_avx2
	.rva	.Leven_avx2
	.rva	.LSEH_info_poly1305_blocks_avx2_2

	.rva	.Leven_avx2
	.rva	.LSEH_end_poly1305_blocks_avx2
	.rva	.LSEH_info_poly1305_blocks_avx2_3
___
$code.=<<___ if ($avx>2);
	.rva	.LSEH_begin_poly1305_blocks_avx512
	.rva	.LSEH_end_poly1305_blocks_avx512
	.rva	.LSEH_info_poly1305_blocks_avx512
___
$code.=<<___;
.section	.xdata
.align	8
.LSEH_info_poly1305_init_x86_64:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.LSEH_begin_poly1305_init_x86_64,.LSEH_begin_poly1305_init_x86_64

.LSEH_info_poly1305_blocks_x86_64:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lblocks_body,.Lblocks_epilogue

.LSEH_info_poly1305_emit_x86_64:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.LSEH_begin_poly1305_emit_x86_64,.LSEH_begin_poly1305_emit_x86_64
___
$code.=<<___ if ($avx);
.LSEH_info_poly1305_blocks_avx_1:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lblocks_avx_body,.Lblocks_avx_epilogue		# HandlerData[]

.LSEH_info_poly1305_blocks_avx_2:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lbase2_64_avx_body,.Lbase2_64_avx_epilogue	# HandlerData[]

.LSEH_info_poly1305_blocks_avx_3:
	.byte	9,0,0,0
	.rva	avx_handler
	.rva	.Ldo_avx_body,.Ldo_avx_epilogue			# HandlerData[]

.LSEH_info_poly1305_emit_avx:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.LSEH_begin_poly1305_emit_avx,.LSEH_begin_poly1305_emit_avx
___
$code.=<<___ if ($avx>1);
.LSEH_info_poly1305_blocks_avx2_1:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lblocks_avx2_body,.Lblocks_avx2_epilogue	# HandlerData[]

.LSEH_info_poly1305_blocks_avx2_2:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lbase2_64_avx2_body,.Lbase2_64_avx2_epilogue	# HandlerData[]

.LSEH_info_poly1305_blocks_avx2_3:
	.byte	9,0,0,0
	.rva	avx_handler
	.rva	.Ldo_avx2_body,.Ldo_avx2_epilogue		# HandlerData[]
___
$code.=<<___ if ($avx>2);
.LSEH_info_poly1305_blocks_avx512:
	.byte	9,0,0,0
	.rva	avx_handler
	.rva	.Ldo_avx512_body,.Ldo_avx512_epilogue		# HandlerData[]
___
}

open SELF,$0;
while(<SELF>) {
	next if (/^#!/);
	last if (!s/^#/\/\// and !/^$/);
	print;
}
close SELF;

foreach (split('\n',$code)) {
	s/\`([^\`]*)\`/eval($1)/ge;
	s/%r([a-z]+)#d/%e$1/g;
	s/%r([0-9]+)#d/%r$1d/g;
	s/%x#%[yz]/%x/g or s/%y#%z/%y/g or s/%z#%[yz]/%z/g;

	if ($kernel) {
		s/(^\.type.*),[0-9]+$/\1/;
		s/(^\.type.*),\@abi-omnipotent+$/\1,\@function/;
		next if /^\.cfi.*/;
	}

	print $_,"\n";
}
close STDOUT;
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!