Current File : //proc/self/root/usr/lib/python3/dist-packages/twisted/test/test_task.py
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Tests for L{twisted.internet.task}.
"""


from twisted.internet import defer, error, interfaces, reactor, task
from twisted.internet.main import installReactor
from twisted.internet.test.modulehelpers import NoReactor
from twisted.trial import unittest

# Be compatible with any jerks who used our private stuff
Clock = task.Clock

from twisted.python import failure


class TestableLoopingCall(task.LoopingCall):
    def __init__(self, clock, *a, **kw):
        super().__init__(*a, **kw)
        self.clock = clock


class TestException(Exception):
    pass


class ClockTests(unittest.TestCase):
    """
    Test the non-wallclock based clock implementation.
    """

    def testSeconds(self):
        """
        Test that the C{seconds} method of the fake clock returns fake time.
        """
        c = task.Clock()
        self.assertEqual(c.seconds(), 0)

    def testCallLater(self):
        """
        Test that calls can be scheduled for later with the fake clock and
        hands back an L{IDelayedCall}.
        """
        c = task.Clock()
        call = c.callLater(1, lambda a, b: None, 1, b=2)
        self.assertTrue(interfaces.IDelayedCall.providedBy(call))
        self.assertEqual(call.getTime(), 1)
        self.assertTrue(call.active())

    def testCallLaterCancelled(self):
        """
        Test that calls can be cancelled.
        """
        c = task.Clock()
        call = c.callLater(1, lambda a, b: None, 1, b=2)
        call.cancel()
        self.assertFalse(call.active())

    def test_callLaterOrdering(self):
        """
        Test that the DelayedCall returned is not one previously
        created.
        """
        c = task.Clock()
        call1 = c.callLater(10, lambda a, b: None, 1, b=2)
        call2 = c.callLater(1, lambda a, b: None, 3, b=4)
        self.assertFalse(call1 is call2)

    def testAdvance(self):
        """
        Test that advancing the clock will fire some calls.
        """
        events = []
        c = task.Clock()
        call = c.callLater(2, lambda: events.append(None))
        c.advance(1)
        self.assertEqual(events, [])
        c.advance(1)
        self.assertEqual(events, [None])
        self.assertFalse(call.active())

    def testAdvanceCancel(self):
        """
        Test attempting to cancel the call in a callback.

        AlreadyCalled should be raised, not for example a ValueError from
        removing the call from Clock.calls. This requires call.called to be
        set before the callback is called.
        """
        c = task.Clock()

        def cb():
            self.assertRaises(error.AlreadyCalled, call.cancel)

        call = c.callLater(1, cb)
        c.advance(1)

    def testCallLaterDelayed(self):
        """
        Test that calls can be delayed.
        """
        events = []
        c = task.Clock()
        call = c.callLater(1, lambda a, b: events.append((a, b)), 1, b=2)
        call.delay(1)
        self.assertEqual(call.getTime(), 2)
        c.advance(1.5)
        self.assertEqual(events, [])
        c.advance(1.0)
        self.assertEqual(events, [(1, 2)])

    def testCallLaterResetLater(self):
        """
        Test that calls can have their time reset to a later time.
        """
        events = []
        c = task.Clock()
        call = c.callLater(2, lambda a, b: events.append((a, b)), 1, b=2)
        c.advance(1)
        call.reset(3)
        self.assertEqual(call.getTime(), 4)
        c.advance(2)
        self.assertEqual(events, [])
        c.advance(1)
        self.assertEqual(events, [(1, 2)])

    def testCallLaterResetSooner(self):
        """
        Test that calls can have their time reset to an earlier time.
        """
        events = []
        c = task.Clock()
        call = c.callLater(4, lambda a, b: events.append((a, b)), 1, b=2)
        call.reset(3)
        self.assertEqual(call.getTime(), 3)
        c.advance(3)
        self.assertEqual(events, [(1, 2)])

    def test_getDelayedCalls(self):
        """
        Test that we can get a list of all delayed calls
        """
        c = task.Clock()
        call = c.callLater(1, lambda x: None)
        call2 = c.callLater(2, lambda x: None)

        calls = c.getDelayedCalls()

        self.assertEqual({call, call2}, set(calls))

    def test_getDelayedCallsEmpty(self):
        """
        Test that we get an empty list from getDelayedCalls on a newly
        constructed Clock.
        """
        c = task.Clock()
        self.assertEqual(c.getDelayedCalls(), [])

    def test_providesIReactorTime(self):
        c = task.Clock()
        self.assertTrue(
            interfaces.IReactorTime.providedBy(c), "Clock does not provide IReactorTime"
        )

    def test_callLaterKeepsCallsOrdered(self):
        """
        The order of calls scheduled by L{task.Clock.callLater} is honored when
        adding a new call via calling L{task.Clock.callLater} again.

        For example, if L{task.Clock.callLater} is invoked with a callable "A"
        and a time t0, and then the L{IDelayedCall} which results from that is
        C{reset} to a later time t2 which is greater than t0, and I{then}
        L{task.Clock.callLater} is invoked again with a callable "B", and time
        t1 which is less than t2 but greater than t0, "B" will be invoked before
        "A".
        """
        result = []
        expected = [("b", 2.0), ("a", 3.0)]
        clock = task.Clock()
        logtime = lambda n: result.append((n, clock.seconds()))

        call_a = clock.callLater(1.0, logtime, "a")
        call_a.reset(3.0)
        clock.callLater(2.0, logtime, "b")

        clock.pump([1] * 3)
        self.assertEqual(result, expected)

    def test_callLaterResetKeepsCallsOrdered(self):
        """
        The order of calls scheduled by L{task.Clock.callLater} is honored when
        re-scheduling an existing call via L{IDelayedCall.reset} on the result
        of a previous call to C{callLater}.

        For example, if L{task.Clock.callLater} is invoked with a callable "A"
        and a time t0, and then L{task.Clock.callLater} is invoked again with a
        callable "B", and time t1 greater than t0, and finally the
        L{IDelayedCall} for "A" is C{reset} to a later time, t2, which is
        greater than t1, "B" will be invoked before "A".
        """
        result = []
        expected = [("b", 2.0), ("a", 3.0)]
        clock = task.Clock()
        logtime = lambda n: result.append((n, clock.seconds()))

        call_a = clock.callLater(1.0, logtime, "a")
        clock.callLater(2.0, logtime, "b")
        call_a.reset(3.0)

        clock.pump([1] * 3)
        self.assertEqual(result, expected)

    def test_callLaterResetInsideCallKeepsCallsOrdered(self):
        """
        The order of calls scheduled by L{task.Clock.callLater} is honored when
        re-scheduling an existing call via L{IDelayedCall.reset} on the result
        of a previous call to C{callLater}, even when that call to C{reset}
        occurs within the callable scheduled by C{callLater} itself.
        """
        result = []
        expected = [("c", 3.0), ("b", 4.0)]
        clock = task.Clock()
        logtime = lambda n: result.append((n, clock.seconds()))

        call_b = clock.callLater(2.0, logtime, "b")

        def a():
            call_b.reset(3.0)

        clock.callLater(1.0, a)
        clock.callLater(3.0, logtime, "c")

        clock.pump([0.5] * 10)
        self.assertEqual(result, expected)


class LoopTests(unittest.TestCase):
    """
    Tests for L{task.LoopingCall} based on a fake L{IReactorTime}
    implementation.
    """

    def test_defaultClock(self):
        """
        L{LoopingCall}'s default clock should be the reactor.
        """
        call = task.LoopingCall(lambda: None)
        self.assertEqual(call.clock, reactor)

    def test_callbackTimeSkips(self):
        """
        When more time than the defined interval passes during the execution
        of a callback, L{LoopingCall} should schedule the next call for the
        next interval which is still in the future.
        """
        times = []
        callDuration = None
        clock = task.Clock()

        def aCallback():
            times.append(clock.seconds())
            clock.advance(callDuration)

        call = task.LoopingCall(aCallback)
        call.clock = clock

        # Start a LoopingCall with a 0.5 second increment, and immediately call
        # the callable.
        callDuration = 2
        call.start(0.5)

        # Verify that the callable was called, and since it was immediate, with
        # no skips.
        self.assertEqual(times, [0])

        # The callback should have advanced the clock by the callDuration.
        self.assertEqual(clock.seconds(), callDuration)

        # An iteration should have occurred at 2, but since 2 is the present
        # and not the future, it is skipped.

        clock.advance(0)
        self.assertEqual(times, [0])

        # 2.5 is in the future, and is not skipped.
        callDuration = 1
        clock.advance(0.5)
        self.assertEqual(times, [0, 2.5])
        self.assertEqual(clock.seconds(), 3.5)

        # Another iteration should have occurred, but it is again the
        # present and not the future, so it is skipped as well.
        clock.advance(0)
        self.assertEqual(times, [0, 2.5])

        # 4 is in the future, and is not skipped.
        callDuration = 0
        clock.advance(0.5)
        self.assertEqual(times, [0, 2.5, 4])
        self.assertEqual(clock.seconds(), 4)

    def test_reactorTimeSkips(self):
        """
        When more time than the defined interval passes between when
        L{LoopingCall} schedules itself to run again and when it actually
        runs again, it should schedule the next call for the next interval
        which is still in the future.
        """
        times = []
        clock = task.Clock()

        def aCallback():
            times.append(clock.seconds())

        # Start a LoopingCall that tracks the time passed, with a 0.5 second
        # increment.
        call = task.LoopingCall(aCallback)
        call.clock = clock
        call.start(0.5)

        # Initially, no time should have passed!
        self.assertEqual(times, [0])

        # Advance the clock by 2 seconds (2 seconds should have passed)
        clock.advance(2)
        self.assertEqual(times, [0, 2])

        # Advance the clock by 1 second (3 total should have passed)
        clock.advance(1)
        self.assertEqual(times, [0, 2, 3])

        # Advance the clock by 0 seconds (this should have no effect!)
        clock.advance(0)
        self.assertEqual(times, [0, 2, 3])

    def test_reactorTimeCountSkips(self):
        """
        When L{LoopingCall} schedules itself to run again, if more than the
        specified interval has passed, it should schedule the next call for the
        next interval which is still in the future. If it was created
        using L{LoopingCall.withCount}, a positional argument will be
        inserted at the beginning of the argument list, indicating the number
        of calls that should have been made.
        """
        times = []
        clock = task.Clock()

        def aCallback(numCalls):
            times.append((clock.seconds(), numCalls))

        # Start a LoopingCall that tracks the time passed, and the number of
        # skips, with a 0.5 second increment.
        call = task.LoopingCall.withCount(aCallback)
        call.clock = clock
        INTERVAL = 0.5
        REALISTIC_DELAY = 0.01
        call.start(INTERVAL)

        # Initially, no seconds should have passed, and one calls should have
        # been made.
        self.assertEqual(times, [(0, 1)])

        # After the interval (plus a small delay, to account for the time that
        # the reactor takes to wake up and process the LoopingCall), we should
        # still have only made one call.
        clock.advance(INTERVAL + REALISTIC_DELAY)
        self.assertEqual(times, [(0, 1), (INTERVAL + REALISTIC_DELAY, 1)])

        # After advancing the clock by three intervals (plus a small delay to
        # account for the reactor), we should have skipped two calls; one less
        # than the number of intervals which have completely elapsed. Along
        # with the call we did actually make, the final number of calls is 3.
        clock.advance((3 * INTERVAL) + REALISTIC_DELAY)
        self.assertEqual(
            times,
            [
                (0, 1),
                (INTERVAL + REALISTIC_DELAY, 1),
                ((4 * INTERVAL) + (2 * REALISTIC_DELAY), 3),
            ],
        )

        # Advancing the clock by 0 seconds should not cause any changes!
        clock.advance(0)
        self.assertEqual(
            times,
            [
                (0, 1),
                (INTERVAL + REALISTIC_DELAY, 1),
                ((4 * INTERVAL) + (2 * REALISTIC_DELAY), 3),
            ],
        )

    def test_countLengthyIntervalCounts(self):
        """
        L{LoopingCall.withCount} counts only calls that were expected to be
        made.  So, if more than one, but less than two intervals pass between
        invocations, it won't increase the count above 1.  For example, a
        L{LoopingCall} with interval T expects to be invoked at T, 2T, 3T, etc.
        However, the reactor takes some time to get around to calling it, so in
        practice it will be called at T+something, 2T+something, 3T+something;
        and due to other things going on in the reactor, "something" is
        variable.  It won't increase the count unless "something" is greater
        than T.  So if the L{LoopingCall} is invoked at T, 2.75T, and 3T,
        the count has not increased, even though the distance between
        invocation 1 and invocation 2 is 1.75T.
        """
        times = []
        clock = task.Clock()

        def aCallback(count):
            times.append((clock.seconds(), count))

        # Start a LoopingCall that tracks the time passed, and the number of
        # calls, with a 0.5 second increment.
        call = task.LoopingCall.withCount(aCallback)
        call.clock = clock
        INTERVAL = 0.5
        REALISTIC_DELAY = 0.01
        call.start(INTERVAL)
        self.assertEqual(times.pop(), (0, 1))

        # About one interval... So far, so good
        clock.advance(INTERVAL + REALISTIC_DELAY)
        self.assertEqual(times.pop(), (INTERVAL + REALISTIC_DELAY, 1))

        # Oh no, something delayed us for a while.
        clock.advance(INTERVAL * 1.75)
        self.assertEqual(times.pop(), ((2.75 * INTERVAL) + REALISTIC_DELAY, 1))

        # Back on track!  We got invoked when we expected this time.
        clock.advance(INTERVAL * 0.25)
        self.assertEqual(times.pop(), ((3.0 * INTERVAL) + REALISTIC_DELAY, 1))

    def test_withCountFloatingPointBoundary(self):
        """
        L{task.LoopingCall.withCount} should never invoke its callable with a
        zero.  Specifically, if a L{task.LoopingCall} created with C{withCount}
        has its L{start <task.LoopingCall.start>} method invoked with a
        floating-point number which introduces decimal inaccuracy when
        multiplied or divided, such as "0.1", L{task.LoopingCall} will never
        invoke its callable with 0.  Also, the sum of all the values passed to
        its callable as the "count" will be an integer, the number of intervals
        that have elapsed.

        This is a regression test for a particularly tricky case to implement.
        """
        clock = task.Clock()
        accumulator = []
        call = task.LoopingCall.withCount(accumulator.append)
        call.clock = clock

        # 'count': the number of ticks within the time span, the number of
        # calls that should be made.  this should be a value which causes
        # floating-point inaccuracy as the denominator for the timespan.
        count = 10
        # 'timespan': the amount of virtual time that the test will take, in
        # seconds, as a floating point number
        timespan = 1.0
        # 'interval': the amount of time for one actual call.
        interval = timespan / count

        call.start(interval, now=False)
        for x in range(count):
            clock.advance(interval)

        def sum_compat(items):
            """
            Make sure the result is more precise.
            On Python 3.11 or older this can be a float with ~ 0.00001
            in precision difference.
            See: https://github.com/python/cpython/issues/100425
            """
            total = 0.0
            for item in items:
                total += item
            return total

        # There is still an epsilon of inaccuracy here; 0.1 is not quite
        # exactly 1/10 in binary, so we need to push our clock over the
        # threshold.
        epsilon = timespan - sum_compat([interval] * count)
        clock.advance(epsilon)
        secondsValue = clock.seconds()
        # The following two assertions are here to ensure that if the values of
        # count, timespan, and interval are changed, that the test remains
        # valid.  First, the "epsilon" value here measures the floating-point
        # inaccuracy in question, and so if it doesn't exist then we are not
        # triggering an interesting condition.
        self.assertTrue(abs(epsilon) > 0.0, f"{epsilon} should be greater than zero")
        # Secondly, task.Clock should behave in such a way that once we have
        # advanced to this point, it has reached or exceeded the timespan.
        self.assertTrue(
            secondsValue >= timespan,
            f"{secondsValue} should be greater than or equal to {timespan}",
        )

        self.assertEqual(sum_compat(accumulator), count)
        self.assertNotIn(0, accumulator)

    def test_withCountIntervalZero(self):
        """
        L{task.LoopingCall.withCount} with interval set to 0 calls the
        countCallable with a count of 1.
        """
        clock = task.Clock()
        accumulator = []

        def foo(cnt):
            accumulator.append(cnt)
            if len(accumulator) > 4:
                loop.stop()

        loop = task.LoopingCall.withCount(foo)
        loop.clock = clock
        deferred = loop.start(0, now=False)

        # Even though we have a no-delay loop,
        # a single iteration of the reactor will not trigger the looping call
        # multiple times.
        # This is why we explicitly iterate multiple times.
        clock.pump([0] * 5)
        self.successResultOf(deferred)

        self.assertEqual([1] * 5, accumulator)

    def test_withCountIntervalZeroDelay(self):
        """
        L{task.LoopingCall.withCount} with interval set to 0 and a delayed
        call during the loop run will still call the countCallable 1 as if
        no delay occurred.
        """
        clock = task.Clock()
        deferred = defer.Deferred()
        accumulator = []

        def foo(cnt):
            accumulator.append(cnt)

            if len(accumulator) == 2:
                return deferred

            if len(accumulator) > 4:
                loop.stop()

        loop = task.LoopingCall.withCount(foo)
        loop.clock = clock
        loop.start(0, now=False)

        clock.pump([0] * 2)
        # Loop will block at the third call.
        self.assertEqual([1] * 2, accumulator)

        # Even if more time pass, the loops is not
        # advanced.
        clock.pump([1] * 2)
        self.assertEqual([1] * 2, accumulator)

        # Once the waiting call got a result the loop continues without
        # observing any delay in countCallable.
        deferred.callback(None)
        clock.pump([0] * 4)
        self.assertEqual([1] * 5, accumulator)

    def test_withCountIntervalZeroDelayThenNonZeroInterval(self):
        """
        L{task.LoopingCall.withCount} with interval set to 0 will still keep
        the time when last called so when the interval is reset.
        """
        clock = task.Clock()
        deferred = defer.Deferred()
        accumulator = []

        # The amount of time to let pass (the number of 1 second steps to
        # take) before the looping function returns an unfired Deferred.
        stepsBeforeDelay = 2

        # The amount of time to let pass (the number of 1 second steps to
        # take) after the looping function returns an unfired Deferred before
        # fiddling with the loop interval.
        extraTimeAfterDelay = 5

        # The new value to set for the loop interval when fiddling with it.
        mutatedLoopInterval = 2

        # The amount of time to let pass (in one jump) after fiddling with the
        # loop interval.
        durationOfDelay = 9

        # This is the amount of time that passed between the
        # Deferred-returning call of the looping function and the next time it
        # gets a chance to run.
        skippedTime = extraTimeAfterDelay + durationOfDelay

        # This is the number of calls that would have been made to the
        # function in that amount of time if the unfired Deferred hadn't been
        # preventing calls and if the clock hadn't made a large jump after the
        # Deferred fired.
        expectedSkipCount = skippedTime // mutatedLoopInterval

        # Because of #5962 LoopingCall sees an unrealistic time for the second
        # call (it seems 1.0 but on a real reactor it will see 2.0) which
        # causes it to calculate the skip count incorrectly.  Fudge our
        # expectation here until #5962 is fixed.
        expectedSkipCount += 1

        def foo(cnt):
            accumulator.append(cnt)
            if len(accumulator) == stepsBeforeDelay:
                return deferred

        loop = task.LoopingCall.withCount(foo)
        loop.clock = clock
        loop.start(0, now=False)

        # Even if a lot of time passes the loop will stop iterating once the
        # Deferred is returned.  1 * stepsBeforeDelay is enough time to get to
        # the Deferred result.  The extraTimeAfterDelay shows us it isn't
        # still iterating afterwards.
        clock.pump([1] * (stepsBeforeDelay + extraTimeAfterDelay))
        self.assertEqual([1] * stepsBeforeDelay, accumulator)

        # When a new interval is set, once the waiting call got a result the
        # loop continues with the new interval.
        loop.interval = mutatedLoopInterval
        deferred.callback(None)

        clock.advance(durationOfDelay)
        # It will count skipped steps since the last loop call.
        self.assertEqual([1, 1, expectedSkipCount], accumulator)

        clock.advance(1 * mutatedLoopInterval)
        self.assertEqual([1, 1, expectedSkipCount, 1], accumulator)

        clock.advance(2 * mutatedLoopInterval)
        self.assertEqual([1, 1, expectedSkipCount, 1, 2], accumulator)

    def testBasicFunction(self):
        # Arrange to have time advanced enough so that our function is
        # called a few times.
        # Only need to go to 2.5 to get 3 calls, since the first call
        # happens before any time has elapsed.
        timings = [0.05, 0.1, 0.1]

        clock = task.Clock()

        L = []

        def foo(a, b, c=None, d=None):
            L.append((a, b, c, d))

        lc = TestableLoopingCall(clock, foo, "a", "b", d="d")
        D = lc.start(0.1)

        theResult = []

        def saveResult(result):
            theResult.append(result)

        D.addCallback(saveResult)

        clock.pump(timings)

        self.assertEqual(len(L), 3, "got %d iterations, not 3" % (len(L),))

        for a, b, c, d in L:
            self.assertEqual(a, "a")
            self.assertEqual(b, "b")
            self.assertIsNone(c)
            self.assertEqual(d, "d")

        lc.stop()
        self.assertIs(theResult[0], lc)

        # Make sure it isn't planning to do anything further.
        self.assertFalse(clock.calls)

    def testDelayedStart(self):
        timings = [0.05, 0.1, 0.1]

        clock = task.Clock()

        L = []
        lc = TestableLoopingCall(clock, L.append, None)
        d = lc.start(0.1, now=False)

        theResult = []

        def saveResult(result):
            theResult.append(result)

        d.addCallback(saveResult)

        clock.pump(timings)

        self.assertEqual(len(L), 2, "got %d iterations, not 2" % (len(L),))
        lc.stop()
        self.assertIs(theResult[0], lc)

        self.assertFalse(clock.calls)

    def testBadDelay(self):
        lc = task.LoopingCall(lambda: None)
        self.assertRaises(ValueError, lc.start, -1)

    # Make sure that LoopingCall.stop() prevents any subsequent calls.
    def _stoppingTest(self, delay):
        ran = []

        def foo():
            ran.append(None)

        clock = task.Clock()
        lc = TestableLoopingCall(clock, foo)
        lc.start(delay, now=False)
        lc.stop()
        self.assertFalse(ran)
        self.assertFalse(clock.calls)

    def testStopAtOnce(self):
        return self._stoppingTest(0)

    def testStoppingBeforeDelayedStart(self):
        return self._stoppingTest(10)

    def test_reset(self):
        """
        Test that L{LoopingCall} can be reset.
        """
        ran = []

        def foo():
            ran.append(None)

        c = task.Clock()
        lc = TestableLoopingCall(c, foo)
        lc.start(2, now=False)
        c.advance(1)
        lc.reset()
        c.advance(1)
        self.assertEqual(ran, [])
        c.advance(1)
        self.assertEqual(ran, [None])

    def test_reprFunction(self):
        """
        L{LoopingCall.__repr__} includes the wrapped function's name.
        """
        self.assertEqual(
            repr(task.LoopingCall(installReactor, 1, key=2)),
            "LoopingCall<None>(installReactor, *(1,), **{'key': 2})",
        )

    def test_reprMethod(self):
        """
        L{LoopingCall.__repr__} includes the wrapped method's full name.
        """
        self.assertEqual(
            repr(task.LoopingCall(TestableLoopingCall.__init__)),
            "LoopingCall<None>(TestableLoopingCall.__init__, *(), **{})",
        )

    def test_deferredDeprecation(self):
        """
        L{LoopingCall.deferred} is deprecated.
        """
        loop = task.LoopingCall(lambda: None)

        loop.deferred

        message = (
            "twisted.internet.task.LoopingCall.deferred was deprecated in "
            "Twisted 16.0.0; "
            "please use the deferred returned by start() instead"
        )
        warnings = self.flushWarnings([self.test_deferredDeprecation])
        self.assertEqual(1, len(warnings))
        self.assertEqual(DeprecationWarning, warnings[0]["category"])
        self.assertEqual(message, warnings[0]["message"])


class ReactorLoopTests(unittest.TestCase):
    # Slightly inferior tests which exercise interactions with an actual
    # reactor.
    def testFailure(self):
        def foo(x):
            raise TestException(x)

        lc = task.LoopingCall(foo, "bar")
        return self.assertFailure(lc.start(0.1), TestException)

    def testFailAndStop(self):
        def foo(x):
            lc.stop()
            raise TestException(x)

        lc = task.LoopingCall(foo, "bar")
        return self.assertFailure(lc.start(0.1), TestException)

    def testEveryIteration(self):
        ran = []

        def foo():
            ran.append(None)
            if len(ran) > 5:
                lc.stop()

        lc = task.LoopingCall(foo)
        d = lc.start(0)

        def stopped(ign):
            self.assertEqual(len(ran), 6)

        return d.addCallback(stopped)

    def testStopAtOnceLater(self):
        # Ensure that even when LoopingCall.stop() is called from a
        # reactor callback, it still prevents any subsequent calls.
        d = defer.Deferred()

        def foo():
            d.errback(
                failure.DefaultException("This task also should never get called.")
            )

        self._lc = task.LoopingCall(foo)
        self._lc.start(1, now=False)
        reactor.callLater(0, self._callback_for_testStopAtOnceLater, d)
        return d

    def _callback_for_testStopAtOnceLater(self, d):
        self._lc.stop()
        reactor.callLater(0, d.callback, "success")

    def testWaitDeferred(self):
        # Tests if the callable isn't scheduled again before the returned
        # deferred has fired.
        timings = [0.2, 0.8]
        clock = task.Clock()

        def foo():
            d = defer.Deferred()
            d.addCallback(lambda _: lc.stop())
            clock.callLater(1, d.callback, None)
            return d

        lc = TestableLoopingCall(clock, foo)
        lc.start(0.2)
        clock.pump(timings)
        self.assertFalse(clock.calls)

    def testFailurePropagation(self):
        # Tests if the failure of the errback of the deferred returned by the
        # callable is propagated to the lc errback.
        #
        # To make sure this test does not hang trial when LoopingCall does not
        # wait for the callable's deferred, it also checks there are no
        # calls in the clock's callLater queue.
        timings = [0.3]
        clock = task.Clock()

        def foo():
            d = defer.Deferred()
            clock.callLater(0.3, d.errback, TestException())
            return d

        lc = TestableLoopingCall(clock, foo)
        d = lc.start(1)
        self.assertFailure(d, TestException)

        clock.pump(timings)
        self.assertFalse(clock.calls)
        return d

    def test_deferredWithCount(self):
        """
        In the case that the function passed to L{LoopingCall.withCount}
        returns a deferred, which does not fire before the next interval
        elapses, the function should not be run again. And if a function call
        is skipped in this fashion, the appropriate count should be
        provided.
        """
        testClock = task.Clock()
        d = defer.Deferred()
        deferredCounts = []

        def countTracker(possibleCount):
            # Keep a list of call counts
            deferredCounts.append(possibleCount)
            # Return a deferred, but only on the first request
            if len(deferredCounts) == 1:
                return d
            else:
                return None

        # Start a looping call for our countTracker function
        # Set the increment to 0.2, and do not call the function on startup.
        lc = task.LoopingCall.withCount(countTracker)
        lc.clock = testClock
        d = lc.start(0.2, now=False)

        # Confirm that nothing has happened yet.
        self.assertEqual(deferredCounts, [])

        # Advance the clock by 0.2 and then 0.4;
        testClock.pump([0.2, 0.4])
        # We should now have exactly one count (of 1 call)
        self.assertEqual(len(deferredCounts), 1)

        # Fire the deferred, and advance the clock by another 0.2
        d.callback(None)
        testClock.pump([0.2])
        # We should now have exactly 2 counts...
        self.assertEqual(len(deferredCounts), 2)
        # The first count should be 1 (one call)
        # The second count should be 3 (calls were missed at about 0.6 and 0.8)
        self.assertEqual(deferredCounts, [1, 3])


class DeferLaterTests(unittest.TestCase):
    """
    Tests for L{task.deferLater}.
    """

    def test_callback(self):
        """
        The L{Deferred} returned by L{task.deferLater} is called back after
        the specified delay with the result of the function passed in.
        """
        results = []
        flag = object()

        def callable(foo, bar):
            results.append((foo, bar))
            return flag

        clock = task.Clock()
        d = task.deferLater(clock, 3, callable, "foo", bar="bar")
        d.addCallback(self.assertIs, flag)
        clock.advance(2)
        self.assertEqual(results, [])
        clock.advance(1)
        self.assertEqual(results, [("foo", "bar")])
        return d

    def test_errback(self):
        """
        The L{Deferred} returned by L{task.deferLater} is errbacked if the
        supplied function raises an exception.
        """

        def callable():
            raise TestException()

        clock = task.Clock()
        d = task.deferLater(clock, 1, callable)
        clock.advance(1)
        return self.assertFailure(d, TestException)

    def test_cancel(self):
        """
        The L{Deferred} returned by L{task.deferLater} can be
        cancelled to prevent the call from actually being performed.
        """
        called = []
        clock = task.Clock()
        d = task.deferLater(clock, 1, called.append, None)
        d.cancel()

        def cbCancelled(ignored):
            # Make sure there are no calls outstanding.
            self.assertEqual([], clock.getDelayedCalls())
            # And make sure the call didn't somehow happen already.
            self.assertFalse(called)

        self.assertFailure(d, defer.CancelledError)
        d.addCallback(cbCancelled)
        return d

    def test_noCallback(self):
        """
        The L{Deferred} returned by L{task.deferLater} fires with C{None}
        when no callback function is passed.
        """
        clock = task.Clock()
        d = task.deferLater(clock, 2.0)
        self.assertNoResult(d)

        clock.advance(2.0)
        self.assertIs(None, self.successResultOf(d))


class _FakeReactor:
    def __init__(self):
        self._running = False
        self._clock = task.Clock()
        self.callLater = self._clock.callLater
        self.seconds = self._clock.seconds
        self.getDelayedCalls = self._clock.getDelayedCalls
        self._whenRunning = []
        self._shutdownTriggers = {"before": [], "during": []}

    def callWhenRunning(self, callable, *args, **kwargs):
        if self._whenRunning is None:
            callable(*args, **kwargs)
        else:
            self._whenRunning.append((callable, args, kwargs))

    def addSystemEventTrigger(self, phase, event, callable, *args):
        assert phase in ("before", "during")
        assert event == "shutdown"
        self._shutdownTriggers[phase].append((callable, args))

    def run(self):
        """
        Call timed events until there are no more or the reactor is stopped.

        @raise RuntimeError: When no timed events are left and the reactor is
            still running.
        """
        self._running = True
        whenRunning = self._whenRunning
        self._whenRunning = None
        for callable, args, kwargs in whenRunning:
            callable(*args, **kwargs)
        while self._running:
            calls = self.getDelayedCalls()
            if not calls:
                raise RuntimeError("No DelayedCalls left")
            self._clock.advance(calls[0].getTime() - self.seconds())
        shutdownTriggers = self._shutdownTriggers
        self._shutdownTriggers = None
        for trigger, args in shutdownTriggers["before"] + shutdownTriggers["during"]:
            trigger(*args)

    def stop(self):
        """
        Stop the reactor.
        """
        if not self._running:
            raise error.ReactorNotRunning()
        self._running = False


class ReactTests(unittest.SynchronousTestCase):
    """
    Tests for L{twisted.internet.task.react}.
    """

    def test_runsUntilAsyncCallback(self):
        """
        L{task.react} runs the reactor until the L{Deferred} returned by the
        function it is passed is called back, then stops it.
        """
        timePassed = []

        def main(reactor):
            finished = defer.Deferred()
            reactor.callLater(1, timePassed.append, True)
            reactor.callLater(2, finished.callback, None)
            return finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(0, exitError.code)
        self.assertEqual(timePassed, [True])
        self.assertEqual(r.seconds(), 2)

    def test_runsUntilSyncCallback(self):
        """
        L{task.react} returns quickly if the L{Deferred} returned by the
        function it is passed has already been called back at the time it is
        returned.
        """

        def main(reactor):
            return defer.succeed(None)

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(0, exitError.code)
        self.assertEqual(r.seconds(), 0)

    def test_runsUntilAsyncErrback(self):
        """
        L{task.react} runs the reactor until the L{defer.Deferred} returned by
        the function it is passed is errbacked, then it stops the reactor and
        reports the error.
        """

        class ExpectedException(Exception):
            pass

        def main(reactor):
            finished = defer.Deferred()
            reactor.callLater(1, finished.errback, ExpectedException())
            return finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)

        self.assertEqual(1, exitError.code)

        errors = self.flushLoggedErrors(ExpectedException)
        self.assertEqual(len(errors), 1)

    def test_runsUntilSyncErrback(self):
        """
        L{task.react} returns quickly if the L{defer.Deferred} returned by the
        function it is passed has already been errbacked at the time it is
        returned.
        """

        class ExpectedException(Exception):
            pass

        def main(reactor):
            return defer.fail(ExpectedException())

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(1, exitError.code)
        self.assertEqual(r.seconds(), 0)
        errors = self.flushLoggedErrors(ExpectedException)
        self.assertEqual(len(errors), 1)

    def test_singleStopCallback(self):
        """
        L{task.react} doesn't try to stop the reactor if the L{defer.Deferred}
        the function it is passed is called back after the reactor has already
        been stopped.
        """

        def main(reactor):
            reactor.callLater(1, reactor.stop)
            finished = defer.Deferred()
            reactor.addSystemEventTrigger("during", "shutdown", finished.callback, None)
            return finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(r.seconds(), 1)

        self.assertEqual(0, exitError.code)

    def test_singleStopErrback(self):
        """
        L{task.react} doesn't try to stop the reactor if the L{defer.Deferred}
        the function it is passed is errbacked after the reactor has already
        been stopped.
        """

        class ExpectedException(Exception):
            pass

        def main(reactor):
            reactor.callLater(1, reactor.stop)
            finished = defer.Deferred()
            reactor.addSystemEventTrigger(
                "during", "shutdown", finished.errback, ExpectedException()
            )
            return finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)

        self.assertEqual(1, exitError.code)

        self.assertEqual(r.seconds(), 1)
        errors = self.flushLoggedErrors(ExpectedException)
        self.assertEqual(len(errors), 1)

    def test_arguments(self):
        """
        L{task.react} passes the elements of the list it is passed as
        positional arguments to the function it is passed.
        """
        args = []

        def main(reactor, x, y, z):
            args.extend((x, y, z))
            return defer.succeed(None)

        r = _FakeReactor()
        exitError = self.assertRaises(
            SystemExit, task.react, main, [1, 2, 3], _reactor=r
        )
        self.assertEqual(0, exitError.code)
        self.assertEqual(args, [1, 2, 3])

    def test_defaultReactor(self):
        """
        L{twisted.internet.reactor} is used if no reactor argument is passed to
        L{task.react}.
        """

        def main(reactor):
            self.passedReactor = reactor
            return defer.succeed(None)

        reactor = _FakeReactor()
        with NoReactor():
            installReactor(reactor)
            exitError = self.assertRaises(SystemExit, task.react, main, [])
            self.assertEqual(0, exitError.code)
        self.assertIs(reactor, self.passedReactor)

    def test_exitWithDefinedCode(self):
        """
        L{task.react} forwards the exit code specified by the C{SystemExit}
        error returned by the passed function, if any.
        """

        def main(reactor):
            return defer.fail(SystemExit(23))

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, [], _reactor=r)
        self.assertEqual(23, exitError.code)

    def test_synchronousStop(self):
        """
        L{task.react} handles when the reactor is stopped just before the
        returned L{Deferred} fires.
        """

        def main(reactor):
            d = defer.Deferred()

            def stop():
                reactor.stop()
                d.callback(None)

            reactor.callWhenRunning(stop)
            return d

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, [], _reactor=r)
        self.assertEqual(0, exitError.code)

    def test_asynchronousStop(self):
        """
        L{task.react} handles when the reactor is stopped and the
        returned L{Deferred} doesn't fire.
        """

        def main(reactor):
            reactor.callLater(1, reactor.stop)
            return defer.Deferred()

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, [], _reactor=r)
        self.assertEqual(0, exitError.code)


class ReactCoroutineFunctionTests(unittest.SynchronousTestCase):
    """
    Tests for L{twisted.internet.task.react} with an C{async def} argument
    """

    def test_runsUntilAsyncCallback(self):
        """
        L{task.react} runs the reactor until the L{Deferred} returned by the
        function it is passed is called back, then stops it.
        """
        timePassed = []

        async def main(reactor):
            finished = defer.Deferred()
            reactor.callLater(1, timePassed.append, True)
            reactor.callLater(2, finished.callback, None)
            return await finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(0, exitError.code)
        self.assertEqual(timePassed, [True])
        self.assertEqual(r.seconds(), 2)

    def test_runsUntilSyncCallback(self):
        """
        L{task.react} returns quickly if the L{Deferred} returned by the
        function it is passed has already been called back at the time it is
        returned.
        """

        async def main(reactor):
            return await defer.succeed(None)

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(0, exitError.code)
        self.assertEqual(r.seconds(), 0)

    def test_runsUntilAsyncErrback(self):
        """
        L{task.react} runs the reactor until the L{defer.Deferred} returned by
        the function it is passed is errbacked, then it stops the reactor and
        reports the error.
        """

        class ExpectedException(Exception):
            pass

        async def main(reactor):
            finished = defer.Deferred()
            reactor.callLater(1, finished.errback, ExpectedException())
            return await finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)

        self.assertEqual(1, exitError.code)

        errors = self.flushLoggedErrors(ExpectedException)
        self.assertEqual(len(errors), 1)

    def test_runsUntilSyncErrback(self):
        """
        L{task.react} returns quickly if the L{defer.Deferred} returned by the
        function it is passed has already been errbacked at the time it is
        returned.
        """

        class ExpectedException(Exception):
            pass

        async def main(reactor):
            return await defer.fail(ExpectedException())

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(1, exitError.code)
        self.assertEqual(r.seconds(), 0)
        errors = self.flushLoggedErrors(ExpectedException)
        self.assertEqual(len(errors), 1)

    def test_singleStopCallback(self):
        """
        L{task.react} doesn't try to stop the reactor if the L{defer.Deferred}
        the function it is passed is called back after the reactor has already
        been stopped.
        """

        async def main(reactor):
            reactor.callLater(1, reactor.stop)
            finished = defer.Deferred()
            reactor.addSystemEventTrigger("during", "shutdown", finished.callback, None)
            return await finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)
        self.assertEqual(r.seconds(), 1)

        self.assertEqual(0, exitError.code)

    def test_singleStopErrback(self):
        """
        L{task.react} doesn't try to stop the reactor if the L{defer.Deferred}
        the function it is passed is errbacked after the reactor has already
        been stopped.
        """

        class ExpectedException(Exception):
            pass

        async def main(reactor):
            reactor.callLater(1, reactor.stop)
            finished = defer.Deferred()
            reactor.addSystemEventTrigger(
                "during", "shutdown", finished.errback, ExpectedException()
            )
            return await finished

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, _reactor=r)

        self.assertEqual(1, exitError.code)

        self.assertEqual(r.seconds(), 1)
        errors = self.flushLoggedErrors(ExpectedException)
        self.assertEqual(len(errors), 1)

    def test_arguments(self):
        """
        L{task.react} passes the elements of the list it is passed as
        positional arguments to the function it is passed.
        """
        args = []

        async def main(reactor, x, y, z):
            args.extend((x, y, z))
            return await defer.succeed(None)

        r = _FakeReactor()
        exitError = self.assertRaises(
            SystemExit, task.react, main, [1, 2, 3], _reactor=r
        )
        self.assertEqual(0, exitError.code)
        self.assertEqual(args, [1, 2, 3])

    def test_defaultReactor(self):
        """
        L{twisted.internet.reactor} is used if no reactor argument is passed to
        L{task.react}.
        """

        async def main(reactor):
            self.passedReactor = reactor
            return await defer.succeed(None)

        reactor = _FakeReactor()
        with NoReactor():
            installReactor(reactor)
            exitError = self.assertRaises(SystemExit, task.react, main, [])
            self.assertEqual(0, exitError.code)
        self.assertIs(reactor, self.passedReactor)

    def test_exitWithDefinedCode(self):
        """
        L{task.react} forwards the exit code specified by the C{SystemExit}
        error returned by the passed function, if any.
        """

        async def main(reactor):
            return await defer.fail(SystemExit(23))

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, [], _reactor=r)
        self.assertEqual(23, exitError.code)

    def test_synchronousStop(self):
        """
        L{task.react} handles when the reactor is stopped just before the
        returned L{Deferred} fires.
        """

        async def main(reactor):
            d = defer.Deferred()

            def stop():
                reactor.stop()
                d.callback(None)

            reactor.callWhenRunning(stop)
            return await d

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, [], _reactor=r)
        self.assertEqual(0, exitError.code)

    def test_asynchronousStop(self):
        """
        L{task.react} handles when the reactor is stopped and the
        returned L{Deferred} doesn't fire.
        """

        async def main(reactor):
            reactor.callLater(1, reactor.stop)
            return await defer.Deferred()

        r = _FakeReactor()
        exitError = self.assertRaises(SystemExit, task.react, main, [], _reactor=r)
        self.assertEqual(0, exitError.code)
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!