Current File : //proc/self/root/usr/lib/python3/dist-packages/oauthlib/oauth1/rfc5849/signature.py
"""
This module is an implementation of `section 3.4`_ of RFC 5849.

**Usage**

Steps for signing a request:

1. Collect parameters from the request using ``collect_parameters``.
2. Normalize those parameters using ``normalize_parameters``.
3. Create the *base string URI* using ``base_string_uri``.
4. Create the *signature base string* from the above three components
   using ``signature_base_string``.
5. Pass the *signature base string* and the client credentials to one of the
   sign-with-client functions. The HMAC-based signing functions needs
   client credentials with secrets. The RSA-based signing functions needs
   client credentials with an RSA private key.

To verify a request, pass the request and credentials to one of the verify
functions. The HMAC-based signing functions needs the shared secrets. The
RSA-based verify functions needs the RSA public key.

**Scope**

All of the functions in this module should be considered internal to OAuthLib,
since they are not imported into the "oauthlib.oauth1" module. Programs using
OAuthLib should not use directly invoke any of the functions in this module.

**Deprecated functions**

The "sign_" methods that are not "_with_client" have been deprecated. They may
be removed in a future release. Since they are all internal functions, this
should have no impact on properly behaving programs.

.. _`section 3.4`: https://tools.ietf.org/html/rfc5849#section-3.4
"""

import binascii
import hashlib
import hmac
import ipaddress
import logging
import urllib.parse as urlparse
import warnings

from oauthlib.common import extract_params, safe_string_equals, urldecode

from . import utils

log = logging.getLogger(__name__)


# ==== Common functions ==========================================

def signature_base_string(
        http_method: str,
        base_str_uri: str,
        normalized_encoded_request_parameters: str) -> str:
    """
    Construct the signature base string.

    The *signature base string* is the value that is calculated and signed by
    the client. It is also independently calculated by the server to verify
    the signature, and therefore must produce the exact same value at both
    ends or the signature won't verify.

    The rules for calculating the *signature base string* are defined in
    section 3.4.1.1`_ of RFC 5849.

    .. _`section 3.4.1.1`: https://tools.ietf.org/html/rfc5849#section-3.4.1.1
    """

    # The signature base string is constructed by concatenating together,
    # in order, the following HTTP request elements:

    # 1.  The HTTP request method in uppercase.  For example: "HEAD",
    #     "GET", "POST", etc.  If the request uses a custom HTTP method, it
    #     MUST be encoded (`Section 3.6`_).
    #
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    base_string = utils.escape(http_method.upper())

    # 2.  An "&" character (ASCII code 38).
    base_string += '&'

    # 3.  The base string URI from `Section 3.4.1.2`_, after being encoded
    #     (`Section 3.6`_).
    #
    # .. _`Section 3.4.1.2`: https://tools.ietf.org/html/rfc5849#section-3.4.1.2
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    base_string += utils.escape(base_str_uri)

    # 4.  An "&" character (ASCII code 38).
    base_string += '&'

    # 5.  The request parameters as normalized in `Section 3.4.1.3.2`_, after
    #     being encoded (`Section 3.6`).
    #
    # .. _`Sec 3.4.1.3.2`: https://tools.ietf.org/html/rfc5849#section-3.4.1.3.2
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    base_string += utils.escape(normalized_encoded_request_parameters)

    return base_string


def base_string_uri(uri: str, host: str = None) -> str:
    """
    Calculates the _base string URI_.

    The *base string URI* is one of the components that make up the
     *signature base string*.

    The ``host`` is optional. If provided, it is used to override any host and
    port values in the ``uri``. The value for ``host`` is usually extracted from
    the "Host" request header from the HTTP request. Its value may be just the
    hostname, or the hostname followed by a colon and a TCP/IP port number
    (hostname:port). If a value for the``host`` is provided but it does not
    contain a port number, the default port number is used (i.e. if the ``uri``
    contained a port number, it will be discarded).

    The rules for calculating the *base string URI* are defined in
    section 3.4.1.2`_ of RFC 5849.

    .. _`section 3.4.1.2`: https://tools.ietf.org/html/rfc5849#section-3.4.1.2

    :param uri: URI
    :param host: hostname with optional port number, separated by a colon
    :return: base string URI
    """

    if not isinstance(uri, str):
        raise ValueError('uri must be a string.')

    # FIXME: urlparse does not support unicode
    output = urlparse.urlparse(uri)
    scheme = output.scheme
    hostname = output.hostname
    port = output.port
    path = output.path
    params = output.params

    # The scheme, authority, and path of the request resource URI `RFC3986`
    # are included by constructing an "http" or "https" URI representing
    # the request resource (without the query or fragment) as follows:
    #
    # .. _`RFC3986`: https://tools.ietf.org/html/rfc3986

    if not scheme:
        raise ValueError('missing scheme')

    # Per `RFC 2616 section 5.1.2`_:
    #
    # Note that the absolute path cannot be empty; if none is present in
    # the original URI, it MUST be given as "/" (the server root).
    #
    # .. _`RFC 2616 5.1.2`: https://tools.ietf.org/html/rfc2616#section-5.1.2
    if not path:
        path = '/'

    # 1.  The scheme and host MUST be in lowercase.
    scheme = scheme.lower()
    # Note: if ``host`` is used, it will be converted to lowercase below
    if hostname is not None:
        hostname = hostname.lower()

    # 2.  The host and port values MUST match the content of the HTTP
    #     request "Host" header field.
    if host is not None:
        # NOTE: override value in uri with provided host
        # Host argument is equal to netloc. It means it's missing scheme.
        # Add it back, before parsing.

        host = host.lower()
        host = f"{scheme}://{host}"
        output = urlparse.urlparse(host)
        hostname = output.hostname
        port = output.port

    # 3.  The port MUST be included if it is not the default port for the
    #     scheme, and MUST be excluded if it is the default.  Specifically,
    #     the port MUST be excluded when making an HTTP request `RFC2616`_
    #     to port 80 or when making an HTTPS request `RFC2818`_ to port 443.
    #     All other non-default port numbers MUST be included.
    #
    # .. _`RFC2616`: https://tools.ietf.org/html/rfc2616
    # .. _`RFC2818`: https://tools.ietf.org/html/rfc2818

    if hostname is None:
        raise ValueError('missing host')

    # NOTE: Try guessing if we're dealing with IP or hostname
    try:
        hostname = ipaddress.ip_address(hostname)
    except ValueError:
        pass

    if isinstance(hostname, ipaddress.IPv6Address):
        hostname = f"[{hostname}]"
    elif isinstance(hostname, ipaddress.IPv4Address):
        hostname = f"{hostname}"

    if port is not None and not (0 < port <= 65535):
        raise ValueError('port out of range')  # 16-bit unsigned ints
    if (scheme, port) in (('http', 80), ('https', 443)):
        netloc = hostname  # default port for scheme: exclude port num
    elif port:
        netloc = f"{hostname}:{port}"  # use hostname:port
    else:
        netloc = hostname

    v = urlparse.urlunparse((scheme, netloc, path, params, '', ''))

    # RFC 5849 does not specify which characters are encoded in the
    # "base string URI", nor how they are encoded - which is very bad, since
    # the signatures won't match if there are any differences. Fortunately,
    # most URIs only use characters that are clearly not encoded (e.g. digits
    # and A-Z, a-z), so have avoided any differences between implementations.
    #
    # The example from its section 3.4.1.2 illustrates that spaces in
    # the path are percent encoded. But it provides no guidance as to what other
    # characters (if any) must be encoded (nor how); nor if characters in the
    # other components are to be encoded or not.
    #
    # This implementation **assumes** that **only** the space is percent-encoded
    # and it is done to the entire value (not just to spaces in the path).
    #
    # This code may need to be changed if it is discovered that other characters
    # are expected to be encoded.
    #
    # Note: the "base string URI" returned by this function will be encoded
    # again before being concatenated into the "signature base string". So any
    # spaces in the URI will actually appear in the "signature base string"
    # as "%2520" (the "%20" further encoded according to section 3.6).

    return v.replace(' ', '%20')


def collect_parameters(uri_query='', body=None, headers=None,
                       exclude_oauth_signature=True, with_realm=False):
    """
    Gather the request parameters from all the parameter sources.

    This function is used to extract all the parameters, which are then passed
    to ``normalize_parameters`` to produce one of the components that make up
    the *signature base string*.

    Parameters starting with `oauth_` will be unescaped.

    Body parameters must be supplied as a dict, a list of 2-tuples, or a
    form encoded query string.

    Headers must be supplied as a dict.

    The rules where the parameters must be sourced from are defined in
    `section 3.4.1.3.1`_ of RFC 5849.

    .. _`Sec 3.4.1.3.1`: https://tools.ietf.org/html/rfc5849#section-3.4.1.3.1
    """
    if body is None:
        body = []
    headers = headers or {}
    params = []

    # The parameters from the following sources are collected into a single
    # list of name/value pairs:

    # *  The query component of the HTTP request URI as defined by
    #    `RFC3986, Section 3.4`_.  The query component is parsed into a list
    #    of name/value pairs by treating it as an
    #    "application/x-www-form-urlencoded" string, separating the names
    #    and values and decoding them as defined by W3C.REC-html40-19980424
    #    `W3C-HTML-4.0`_, Section 17.13.4.
    #
    # .. _`RFC3986, Sec 3.4`: https://tools.ietf.org/html/rfc3986#section-3.4
    # .. _`W3C-HTML-4.0`: https://www.w3.org/TR/1998/REC-html40-19980424/
    if uri_query:
        params.extend(urldecode(uri_query))

    # *  The OAuth HTTP "Authorization" header field (`Section 3.5.1`_) if
    #    present.  The header's content is parsed into a list of name/value
    #    pairs excluding the "realm" parameter if present.  The parameter
    #    values are decoded as defined by `Section 3.5.1`_.
    #
    # .. _`Section 3.5.1`: https://tools.ietf.org/html/rfc5849#section-3.5.1
    if headers:
        headers_lower = {k.lower(): v for k, v in headers.items()}
        authorization_header = headers_lower.get('authorization')
        if authorization_header is not None:
            params.extend([i for i in utils.parse_authorization_header(
                authorization_header) if with_realm or i[0] != 'realm'])

    # *  The HTTP request entity-body, but only if all of the following
    #    conditions are met:
    #     *  The entity-body is single-part.
    #
    #     *  The entity-body follows the encoding requirements of the
    #        "application/x-www-form-urlencoded" content-type as defined by
    #        W3C.REC-html40-19980424 `W3C-HTML-4.0`_.

    #     *  The HTTP request entity-header includes the "Content-Type"
    #        header field set to "application/x-www-form-urlencoded".
    #
    # .. _`W3C-HTML-4.0`: https://www.w3.org/TR/1998/REC-html40-19980424/

    # TODO: enforce header param inclusion conditions
    bodyparams = extract_params(body) or []
    params.extend(bodyparams)

    # ensure all oauth params are unescaped
    unescaped_params = []
    for k, v in params:
        if k.startswith('oauth_'):
            v = utils.unescape(v)
        unescaped_params.append((k, v))

    # The "oauth_signature" parameter MUST be excluded from the signature
    # base string if present.
    if exclude_oauth_signature:
        unescaped_params = list(filter(lambda i: i[0] != 'oauth_signature',
                                       unescaped_params))

    return unescaped_params


def normalize_parameters(params) -> str:
    """
    Calculate the normalized request parameters.

    The *normalized request parameters* is one of the components that make up
    the *signature base string*.

    The rules for parameter normalization are defined in `section 3.4.1.3.2`_ of
    RFC 5849.

    .. _`Sec 3.4.1.3.2`: https://tools.ietf.org/html/rfc5849#section-3.4.1.3.2
    """

    # The parameters collected in `Section 3.4.1.3`_ are normalized into a
    # single string as follows:
    #
    # .. _`Section 3.4.1.3`: https://tools.ietf.org/html/rfc5849#section-3.4.1.3

    # 1.  First, the name and value of each parameter are encoded
    #     (`Section 3.6`_).
    #
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    key_values = [(utils.escape(k), utils.escape(v)) for k, v in params]

    # 2.  The parameters are sorted by name, using ascending byte value
    #     ordering.  If two or more parameters share the same name, they
    #     are sorted by their value.
    key_values.sort()

    # 3.  The name of each parameter is concatenated to its corresponding
    #     value using an "=" character (ASCII code 61) as a separator, even
    #     if the value is empty.
    parameter_parts = ['{}={}'.format(k, v) for k, v in key_values]

    # 4.  The sorted name/value pairs are concatenated together into a
    #     single string by using an "&" character (ASCII code 38) as
    #     separator.
    return '&'.join(parameter_parts)


# ==== Common functions for HMAC-based signature methods =========

def _sign_hmac(hash_algorithm_name: str,
               sig_base_str: str,
               client_secret: str,
               resource_owner_secret: str):
    """
    **HMAC-SHA256**

    The "HMAC-SHA256" signature method uses the HMAC-SHA256 signature
    algorithm as defined in `RFC4634`_::

        digest = HMAC-SHA256 (key, text)

    Per `section 3.4.2`_ of the spec.

    .. _`RFC4634`: https://tools.ietf.org/html/rfc4634
    .. _`section 3.4.2`: https://tools.ietf.org/html/rfc5849#section-3.4.2
    """

    # The HMAC-SHA256 function variables are used in following way:

    # text is set to the value of the signature base string from
    # `Section 3.4.1.1`_.
    #
    # .. _`Section 3.4.1.1`: https://tools.ietf.org/html/rfc5849#section-3.4.1.1
    text = sig_base_str

    # key is set to the concatenated values of:
    # 1.  The client shared-secret, after being encoded (`Section 3.6`_).
    #
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    key = utils.escape(client_secret or '')

    # 2.  An "&" character (ASCII code 38), which MUST be included
    #     even when either secret is empty.
    key += '&'

    # 3.  The token shared-secret, after being encoded (`Section 3.6`_).
    #
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    key += utils.escape(resource_owner_secret or '')

    # Get the hashing algorithm to use

    m = {
        'SHA-1': hashlib.sha1,
        'SHA-256': hashlib.sha256,
        'SHA-512': hashlib.sha512,
    }
    hash_alg = m[hash_algorithm_name]

    # Calculate the signature

    # FIXME: HMAC does not support unicode!
    key_utf8 = key.encode('utf-8')
    text_utf8 = text.encode('utf-8')
    signature = hmac.new(key_utf8, text_utf8, hash_alg)

    # digest  is used to set the value of the "oauth_signature" protocol
    #         parameter, after the result octet string is base64-encoded
    #         per `RFC2045, Section 6.8`.
    #
    # .. _`RFC2045, Sec 6.8`: https://tools.ietf.org/html/rfc2045#section-6.8
    return binascii.b2a_base64(signature.digest())[:-1].decode('utf-8')


def _verify_hmac(hash_algorithm_name: str,
                 request,
                 client_secret=None,
                 resource_owner_secret=None):
    """Verify a HMAC-SHA1 signature.

    Per `section 3.4`_ of the spec.

    .. _`section 3.4`: https://tools.ietf.org/html/rfc5849#section-3.4

    To satisfy `RFC2616 section 5.2`_ item 1, the request argument's uri
    attribute MUST be an absolute URI whose netloc part identifies the
    origin server or gateway on which the resource resides. Any Host
    item of the request argument's headers dict attribute will be
    ignored.

    .. _`RFC2616 section 5.2`: https://tools.ietf.org/html/rfc2616#section-5.2

    """
    norm_params = normalize_parameters(request.params)
    bs_uri = base_string_uri(request.uri)
    sig_base_str = signature_base_string(request.http_method, bs_uri,
                                         norm_params)
    signature = _sign_hmac(hash_algorithm_name, sig_base_str,
                           client_secret, resource_owner_secret)
    match = safe_string_equals(signature, request.signature)
    if not match:
        log.debug('Verify HMAC failed: signature base string: %s', sig_base_str)
    return match


# ==== HMAC-SHA1 =================================================

def sign_hmac_sha1_with_client(sig_base_str, client):
    return _sign_hmac('SHA-1', sig_base_str,
                      client.client_secret, client.resource_owner_secret)


def verify_hmac_sha1(request, client_secret=None, resource_owner_secret=None):
    return _verify_hmac('SHA-1', request, client_secret, resource_owner_secret)


def sign_hmac_sha1(base_string, client_secret, resource_owner_secret):
    """
    Deprecated function for calculating a HMAC-SHA1 signature.

    This function has been replaced by invoking ``sign_hmac`` with "SHA-1"
    as the hash algorithm name.

    This function was invoked by sign_hmac_sha1_with_client and
    test_signatures.py, but does any application invoke it directly? If not,
    it can be removed.
    """
    warnings.warn('use sign_hmac_sha1_with_client instead of sign_hmac_sha1',
                  DeprecationWarning)

    # For some unknown reason, the original implementation assumed base_string
    # could either be bytes or str. The signature base string calculating
    # function always returned a str, so the new ``sign_rsa`` only expects that.

    base_string = base_string.decode('ascii') \
        if isinstance(base_string, bytes) else base_string

    return _sign_hmac('SHA-1', base_string,
                      client_secret, resource_owner_secret)


# ==== HMAC-SHA256 ===============================================

def sign_hmac_sha256_with_client(sig_base_str, client):
    return _sign_hmac('SHA-256', sig_base_str,
                      client.client_secret, client.resource_owner_secret)


def verify_hmac_sha256(request, client_secret=None, resource_owner_secret=None):
    return _verify_hmac('SHA-256', request,
                        client_secret, resource_owner_secret)


def sign_hmac_sha256(base_string, client_secret, resource_owner_secret):
    """
    Deprecated function for calculating a HMAC-SHA256 signature.

    This function has been replaced by invoking ``sign_hmac`` with "SHA-256"
    as the hash algorithm name.

    This function was invoked by sign_hmac_sha256_with_client and
    test_signatures.py, but does any application invoke it directly? If not,
    it can be removed.
    """
    warnings.warn(
        'use sign_hmac_sha256_with_client instead of sign_hmac_sha256',
        DeprecationWarning)

    # For some unknown reason, the original implementation assumed base_string
    # could either be bytes or str. The signature base string calculating
    # function always returned a str, so the new ``sign_rsa`` only expects that.

    base_string = base_string.decode('ascii') \
        if isinstance(base_string, bytes) else base_string

    return _sign_hmac('SHA-256', base_string,
                      client_secret, resource_owner_secret)


# ==== HMAC-SHA512 ===============================================

def sign_hmac_sha512_with_client(sig_base_str: str,
                                 client):
    return _sign_hmac('SHA-512', sig_base_str,
                      client.client_secret, client.resource_owner_secret)


def verify_hmac_sha512(request,
                       client_secret: str = None,
                       resource_owner_secret: str = None):
    return _verify_hmac('SHA-512', request,
                        client_secret, resource_owner_secret)


# ==== Common functions for RSA-based signature methods ==========

_jwt_rsa = {}  # cache of RSA-hash implementations from PyJWT jwt.algorithms


def _get_jwt_rsa_algorithm(hash_algorithm_name: str):
    """
    Obtains an RSAAlgorithm object that implements RSA with the hash algorithm.

    This method maintains the ``_jwt_rsa`` cache.

    Returns a jwt.algorithm.RSAAlgorithm.
    """
    if hash_algorithm_name in _jwt_rsa:
        # Found in cache: return it
        return _jwt_rsa[hash_algorithm_name]
    else:
        # Not in cache: instantiate a new RSAAlgorithm

        # PyJWT has some nice pycrypto/cryptography abstractions
        import jwt.algorithms as jwt_algorithms
        m = {
            'SHA-1': jwt_algorithms.hashes.SHA1,
            'SHA-256': jwt_algorithms.hashes.SHA256,
            'SHA-512': jwt_algorithms.hashes.SHA512,
        }
        v = jwt_algorithms.RSAAlgorithm(m[hash_algorithm_name])

        _jwt_rsa[hash_algorithm_name] = v  # populate cache

        return v


def _prepare_key_plus(alg, keystr):
    """
    Prepare a PEM encoded key (public or private), by invoking the `prepare_key`
    method on alg with the keystr.

    The keystr should be a string or bytes.  If the keystr is bytes, it is
    decoded as UTF-8 before being passed to prepare_key. Otherwise, it
    is passed directly.
    """
    if isinstance(keystr, bytes):
        keystr = keystr.decode('utf-8')
    return alg.prepare_key(keystr)


def _sign_rsa(hash_algorithm_name: str,
              sig_base_str: str,
              rsa_private_key: str):
    """
    Calculate the signature for an RSA-based signature method.

    The ``alg`` is used to calculate the digest over the signature base string.
    For the "RSA_SHA1" signature method, the alg must be SHA-1. While OAuth 1.0a
    only defines the RSA-SHA1 signature method, this function can be used for
    other non-standard signature methods that only differ from RSA-SHA1 by the
    digest algorithm.

    Signing for the RSA-SHA1 signature method is defined in
    `section 3.4.3`_ of RFC 5849.

    The RSASSA-PKCS1-v1_5 signature algorithm used defined by
    `RFC3447, Section 8.2`_ (also known as PKCS#1), with the `alg` as the
    hash function for EMSA-PKCS1-v1_5.  To
    use this method, the client MUST have established client credentials
    with the server that included its RSA public key (in a manner that is
    beyond the scope of this specification).

    .. _`section 3.4.3`: https://tools.ietf.org/html/rfc5849#section-3.4.3
    .. _`RFC3447, Section 8.2`: https://tools.ietf.org/html/rfc3447#section-8.2
    """

    # Get the implementation of RSA-hash

    alg = _get_jwt_rsa_algorithm(hash_algorithm_name)

    # Check private key

    if not rsa_private_key:
        raise ValueError('rsa_private_key required for RSA with ' +
                         alg.hash_alg.name + ' signature method')

    # Convert the "signature base string" into a sequence of bytes (M)
    #
    # The signature base string, by definition, only contain printable US-ASCII
    # characters. So encoding it as 'ascii' will always work. It will raise a
    # ``UnicodeError`` if it can't encode the value, which will never happen
    # if the signature base string was created correctly. Therefore, using
    # 'ascii' encoding provides an extra level of error checking.

    m = sig_base_str.encode('ascii')

    # Perform signing: S = RSASSA-PKCS1-V1_5-SIGN (K, M)

    key = _prepare_key_plus(alg, rsa_private_key)
    s = alg.sign(m, key)

    # base64-encoded per RFC2045 section 6.8.
    #
    # 1. While b2a_base64 implements base64 defined by RFC 3548. As used here,
    #    it is the same as base64 defined by RFC 2045.
    # 2. b2a_base64 includes a "\n" at the end of its result ([:-1] removes it)
    # 3. b2a_base64 produces a binary string. Use decode to produce a str.
    #    It should only contain only printable US-ASCII characters.

    return binascii.b2a_base64(s)[:-1].decode('ascii')


def _verify_rsa(hash_algorithm_name: str,
                request,
                rsa_public_key: str):
    """
    Verify a base64 encoded signature for a RSA-based signature method.

    The ``alg`` is used to calculate the digest over the signature base string.
    For the "RSA_SHA1" signature method, the alg must be SHA-1. While OAuth 1.0a
    only defines the RSA-SHA1 signature method, this function can be used for
    other non-standard signature methods that only differ from RSA-SHA1 by the
    digest algorithm.

    Verification for the RSA-SHA1 signature method is defined in
    `section 3.4.3`_ of RFC 5849.

    .. _`section 3.4.3`: https://tools.ietf.org/html/rfc5849#section-3.4.3

        To satisfy `RFC2616 section 5.2`_ item 1, the request argument's uri
        attribute MUST be an absolute URI whose netloc part identifies the
        origin server or gateway on which the resource resides. Any Host
        item of the request argument's headers dict attribute will be
        ignored.

        .. _`RFC2616 Sec 5.2`: https://tools.ietf.org/html/rfc2616#section-5.2
    """

    try:
        # Calculate the *signature base string* of the actual received request

        norm_params = normalize_parameters(request.params)
        bs_uri = base_string_uri(request.uri)
        sig_base_str = signature_base_string(
            request.http_method, bs_uri, norm_params)

        # Obtain the signature that was received in the request

        sig = binascii.a2b_base64(request.signature.encode('ascii'))

        # Get the implementation of RSA-with-hash algorithm to use

        alg = _get_jwt_rsa_algorithm(hash_algorithm_name)

        # Verify the received signature was produced by the private key
        # corresponding to the `rsa_public_key`, signing exact same
        # *signature base string*.
        #
        #     RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

        key = _prepare_key_plus(alg, rsa_public_key)

        # The signature base string only contain printable US-ASCII characters.
        # The ``encode`` method with the default "strict" error handling will
        # raise a ``UnicodeError`` if it can't encode the value. So using
        # "ascii" will always work.

        verify_ok = alg.verify(sig_base_str.encode('ascii'), key, sig)

        if not verify_ok:
            log.debug('Verify failed: RSA with ' + alg.hash_alg.name +
                      ': signature base string=%s' + sig_base_str)
        return verify_ok

    except UnicodeError:
        # A properly encoded signature will only contain printable US-ASCII
        # characters. The ``encode`` method with the default "strict" error
        # handling will raise a ``UnicodeError`` if it can't decode the value.
        # So using "ascii" will work with all valid signatures. But an
        # incorrectly or maliciously produced signature could contain other
        # bytes.
        #
        # This implementation treats that situation as equivalent to the
        # signature verification having failed.
        #
        # Note: simply changing the encode to use 'utf-8' will not remove this
        # case, since an incorrect or malicious request can contain bytes which
        # are invalid as UTF-8.
        return False


# ==== RSA-SHA1 ==================================================

def sign_rsa_sha1_with_client(sig_base_str, client):
    # For some reason, this function originally accepts both str and bytes.
    # This behaviour is preserved here. But won't be done for the newer
    # sign_rsa_sha256_with_client and sign_rsa_sha512_with_client functions,
    # which will only accept strings. The function to calculate a
    # "signature base string" always produces a string, so it is not clear
    # why support for bytes would ever be needed.
    sig_base_str = sig_base_str.decode('ascii')\
        if isinstance(sig_base_str, bytes) else sig_base_str

    return _sign_rsa('SHA-1', sig_base_str, client.rsa_key)


def verify_rsa_sha1(request, rsa_public_key: str):
    return _verify_rsa('SHA-1', request, rsa_public_key)


def sign_rsa_sha1(base_string, rsa_private_key):
    """
    Deprecated function for calculating a RSA-SHA1 signature.

    This function has been replaced by invoking ``sign_rsa`` with "SHA-1"
    as the hash algorithm name.

    This function was invoked by sign_rsa_sha1_with_client and
    test_signatures.py, but does any application invoke it directly? If not,
    it can be removed.
    """
    warnings.warn('use _sign_rsa("SHA-1", ...) instead of sign_rsa_sha1',
                  DeprecationWarning)

    if isinstance(base_string, bytes):
        base_string = base_string.decode('ascii')

    return _sign_rsa('SHA-1', base_string, rsa_private_key)


# ==== RSA-SHA256 ================================================

def sign_rsa_sha256_with_client(sig_base_str: str, client):
    return _sign_rsa('SHA-256', sig_base_str, client.rsa_key)


def verify_rsa_sha256(request, rsa_public_key: str):
    return _verify_rsa('SHA-256', request, rsa_public_key)


# ==== RSA-SHA512 ================================================

def sign_rsa_sha512_with_client(sig_base_str: str, client):
    return _sign_rsa('SHA-512', sig_base_str, client.rsa_key)


def verify_rsa_sha512(request, rsa_public_key: str):
    return _verify_rsa('SHA-512', request, rsa_public_key)


# ==== PLAINTEXT =================================================

def sign_plaintext_with_client(_signature_base_string, client):
    # _signature_base_string is not used because the signature with PLAINTEXT
    # is just the secret: it isn't a real signature.
    return sign_plaintext(client.client_secret, client.resource_owner_secret)


def sign_plaintext(client_secret, resource_owner_secret):
    """Sign a request using plaintext.

    Per `section 3.4.4`_ of the spec.

    The "PLAINTEXT" method does not employ a signature algorithm.  It
    MUST be used with a transport-layer mechanism such as TLS or SSL (or
    sent over a secure channel with equivalent protections).  It does not
    utilize the signature base string or the "oauth_timestamp" and
    "oauth_nonce" parameters.

    .. _`section 3.4.4`: https://tools.ietf.org/html/rfc5849#section-3.4.4

    """

    # The "oauth_signature" protocol parameter is set to the concatenated
    # value of:

    # 1.  The client shared-secret, after being encoded (`Section 3.6`_).
    #
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    signature = utils.escape(client_secret or '')

    # 2.  An "&" character (ASCII code 38), which MUST be included even
    #     when either secret is empty.
    signature += '&'

    # 3.  The token shared-secret, after being encoded (`Section 3.6`_).
    #
    # .. _`Section 3.6`: https://tools.ietf.org/html/rfc5849#section-3.6
    signature += utils.escape(resource_owner_secret or '')

    return signature


def verify_plaintext(request, client_secret=None, resource_owner_secret=None):
    """Verify a PLAINTEXT signature.

    Per `section 3.4`_ of the spec.

    .. _`section 3.4`: https://tools.ietf.org/html/rfc5849#section-3.4
    """
    signature = sign_plaintext(client_secret, resource_owner_secret)
    match = safe_string_equals(signature, request.signature)
    if not match:
        log.debug('Verify PLAINTEXT failed')
    return match
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!