Current File : //proc/self/root/lib/python3/dist-packages/botocore/model.py
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Abstractions to interact with service models."""
from collections import defaultdict
from typing import NamedTuple, Union

from botocore.compat import OrderedDict
from botocore.exceptions import (
    MissingServiceIdError,
    UndefinedModelAttributeError,
)
from botocore.utils import CachedProperty, hyphenize_service_id, instance_cache

NOT_SET = object()


class NoShapeFoundError(Exception):
    pass


class InvalidShapeError(Exception):
    pass


class OperationNotFoundError(Exception):
    pass


class InvalidShapeReferenceError(Exception):
    pass


class ServiceId(str):
    def hyphenize(self):
        return hyphenize_service_id(self)


class Shape:
    """Object representing a shape from the service model."""

    # To simplify serialization logic, all shape params that are
    # related to serialization are moved from the top level hash into
    # a 'serialization' hash.  This list below contains the names of all
    # the attributes that should be moved.
    SERIALIZED_ATTRS = [
        'locationName',
        'queryName',
        'flattened',
        'location',
        'payload',
        'streaming',
        'timestampFormat',
        'xmlNamespace',
        'resultWrapper',
        'xmlAttribute',
        'eventstream',
        'event',
        'eventheader',
        'eventpayload',
        'jsonvalue',
        'timestampFormat',
        'hostLabel',
    ]
    METADATA_ATTRS = [
        'required',
        'min',
        'max',
        'pattern',
        'sensitive',
        'enum',
        'idempotencyToken',
        'error',
        'exception',
        'endpointdiscoveryid',
        'retryable',
        'document',
        'union',
        'contextParam',
        'clientContextParams',
        'requiresLength',
    ]
    MAP_TYPE = OrderedDict

    def __init__(self, shape_name, shape_model, shape_resolver=None):
        """

        :type shape_name: string
        :param shape_name: The name of the shape.

        :type shape_model: dict
        :param shape_model: The shape model.  This would be the value
            associated with the key in the "shapes" dict of the
            service model (i.e ``model['shapes'][shape_name]``)

        :type shape_resolver: botocore.model.ShapeResolver
        :param shape_resolver: A shape resolver object.  This is used to
            resolve references to other shapes.  For scalar shape types
            (string, integer, boolean, etc.), this argument is not
            required.  If a shape_resolver is not provided for a complex
            type, then a ``ValueError`` will be raised when an attempt
            to resolve a shape is made.

        """
        self.name = shape_name
        self.type_name = shape_model['type']
        self.documentation = shape_model.get('documentation', '')
        self._shape_model = shape_model
        if shape_resolver is None:
            # If a shape_resolver is not provided, we create an object
            # that will throw errors if you attempt to resolve
            # a shape.  This is actually ok for scalar shapes
            # because they don't need to resolve shapes and shouldn't
            # be required to provide an object they won't use.
            shape_resolver = UnresolvableShapeMap()
        self._shape_resolver = shape_resolver
        self._cache = {}

    @CachedProperty
    def serialization(self):
        """Serialization information about the shape.

        This contains information that may be needed for input serialization
        or response parsing.  This can include:

            * name
            * queryName
            * flattened
            * location
            * payload
            * streaming
            * xmlNamespace
            * resultWrapper
            * xmlAttribute
            * jsonvalue
            * timestampFormat

        :rtype: dict
        :return: Serialization information about the shape.

        """
        model = self._shape_model
        serialization = {}
        for attr in self.SERIALIZED_ATTRS:
            if attr in self._shape_model:
                serialization[attr] = model[attr]
        # For consistency, locationName is renamed to just 'name'.
        if 'locationName' in serialization:
            serialization['name'] = serialization.pop('locationName')
        return serialization

    @CachedProperty
    def metadata(self):
        """Metadata about the shape.

        This requires optional information about the shape, including:

            * min
            * max
            * pattern
            * enum
            * sensitive
            * required
            * idempotencyToken
            * document
            * union
            * contextParam
            * clientContextParams
            * requiresLength

        :rtype: dict
        :return: Metadata about the shape.

        """
        model = self._shape_model
        metadata = {}
        for attr in self.METADATA_ATTRS:
            if attr in self._shape_model:
                metadata[attr] = model[attr]
        return metadata

    @CachedProperty
    def required_members(self):
        """A list of members that are required.

        A structure shape can define members that are required.
        This value will return a list of required members.  If there
        are no required members an empty list is returned.

        """
        return self.metadata.get('required', [])

    def _resolve_shape_ref(self, shape_ref):
        return self._shape_resolver.resolve_shape_ref(shape_ref)

    def __repr__(self):
        return f"<{self.__class__.__name__}({self.name})>"

    @property
    def event_stream_name(self):
        return None


class StructureShape(Shape):
    @CachedProperty
    def members(self):
        members = self._shape_model.get('members', self.MAP_TYPE())
        # The members dict looks like:
        #    'members': {
        #        'MemberName': {'shape': 'shapeName'},
        #        'MemberName2': {'shape': 'shapeName'},
        #    }
        # We return a dict of member name to Shape object.
        shape_members = self.MAP_TYPE()
        for name, shape_ref in members.items():
            shape_members[name] = self._resolve_shape_ref(shape_ref)
        return shape_members

    @CachedProperty
    def event_stream_name(self):
        for member_name, member in self.members.items():
            if member.serialization.get('eventstream'):
                return member_name
        return None

    @CachedProperty
    def error_code(self):
        if not self.metadata.get('exception', False):
            return None
        error_metadata = self.metadata.get("error", {})
        code = error_metadata.get("code")
        if code:
            return code
        # Use the exception name if there is no explicit code modeled
        return self.name

    @CachedProperty
    def is_document_type(self):
        return self.metadata.get('document', False)

    @CachedProperty
    def is_tagged_union(self):
        return self.metadata.get('union', False)


class ListShape(Shape):
    @CachedProperty
    def member(self):
        return self._resolve_shape_ref(self._shape_model['member'])


class MapShape(Shape):
    @CachedProperty
    def key(self):
        return self._resolve_shape_ref(self._shape_model['key'])

    @CachedProperty
    def value(self):
        return self._resolve_shape_ref(self._shape_model['value'])


class StringShape(Shape):
    @CachedProperty
    def enum(self):
        return self.metadata.get('enum', [])


class StaticContextParameter(NamedTuple):
    name: str
    value: Union[bool, str]


class ContextParameter(NamedTuple):
    name: str
    member_name: str


class ClientContextParameter(NamedTuple):
    name: str
    type: str
    documentation: str


class ServiceModel:
    """

    :ivar service_description: The parsed service description dictionary.

    """

    def __init__(self, service_description, service_name=None):
        """

        :type service_description: dict
        :param service_description: The service description model.  This value
            is obtained from a botocore.loader.Loader, or from directly loading
            the file yourself::

                service_description = json.load(
                    open('/path/to/service-description-model.json'))
                model = ServiceModel(service_description)

        :type service_name: str
        :param service_name: The name of the service.  Normally this is
            the endpoint prefix defined in the service_description.  However,
            you can override this value to provide a more convenient name.
            This is done in a few places in botocore (ses instead of email,
            emr instead of elasticmapreduce).  If this value is not provided,
            it will default to the endpointPrefix defined in the model.

        """
        self._service_description = service_description
        # We want clients to be able to access metadata directly.
        self.metadata = service_description.get('metadata', {})
        self._shape_resolver = ShapeResolver(
            service_description.get('shapes', {})
        )
        self._signature_version = NOT_SET
        self._service_name = service_name
        self._instance_cache = {}

    def shape_for(self, shape_name, member_traits=None):
        return self._shape_resolver.get_shape_by_name(
            shape_name, member_traits
        )

    def shape_for_error_code(self, error_code):
        return self._error_code_cache.get(error_code, None)

    @CachedProperty
    def _error_code_cache(self):
        error_code_cache = {}
        for error_shape in self.error_shapes:
            code = error_shape.error_code
            error_code_cache[code] = error_shape
        return error_code_cache

    def resolve_shape_ref(self, shape_ref):
        return self._shape_resolver.resolve_shape_ref(shape_ref)

    @CachedProperty
    def shape_names(self):
        return list(self._service_description.get('shapes', {}))

    @CachedProperty
    def error_shapes(self):
        error_shapes = []
        for shape_name in self.shape_names:
            error_shape = self.shape_for(shape_name)
            if error_shape.metadata.get('exception', False):
                error_shapes.append(error_shape)
        return error_shapes

    @instance_cache
    def operation_model(self, operation_name):
        try:
            model = self._service_description['operations'][operation_name]
        except KeyError:
            raise OperationNotFoundError(operation_name)
        return OperationModel(model, self, operation_name)

    @CachedProperty
    def documentation(self):
        return self._service_description.get('documentation', '')

    @CachedProperty
    def operation_names(self):
        return list(self._service_description.get('operations', []))

    @CachedProperty
    def service_name(self):
        """The name of the service.

        This defaults to the endpointPrefix defined in the service model.
        However, this value can be overriden when a ``ServiceModel`` is
        created.  If a service_name was not provided when the ``ServiceModel``
        was created and if there is no endpointPrefix defined in the
        service model, then an ``UndefinedModelAttributeError`` exception
        will be raised.

        """
        if self._service_name is not None:
            return self._service_name
        else:
            return self.endpoint_prefix

    @CachedProperty
    def service_id(self):
        try:
            return ServiceId(self._get_metadata_property('serviceId'))
        except UndefinedModelAttributeError:
            raise MissingServiceIdError(service_name=self._service_name)

    @CachedProperty
    def signing_name(self):
        """The name to use when computing signatures.

        If the model does not define a signing name, this
        value will be the endpoint prefix defined in the model.
        """
        signing_name = self.metadata.get('signingName')
        if signing_name is None:
            signing_name = self.endpoint_prefix
        return signing_name

    @CachedProperty
    def api_version(self):
        return self._get_metadata_property('apiVersion')

    @CachedProperty
    def protocol(self):
        return self._get_metadata_property('protocol')

    @CachedProperty
    def endpoint_prefix(self):
        return self._get_metadata_property('endpointPrefix')

    @CachedProperty
    def endpoint_discovery_operation(self):
        for operation in self.operation_names:
            model = self.operation_model(operation)
            if model.is_endpoint_discovery_operation:
                return model

    @CachedProperty
    def endpoint_discovery_required(self):
        for operation in self.operation_names:
            model = self.operation_model(operation)
            if (
                model.endpoint_discovery is not None
                and model.endpoint_discovery.get('required')
            ):
                return True
        return False

    @CachedProperty
    def client_context_parameters(self):
        params = self._service_description.get('clientContextParams', {})
        return [
            ClientContextParameter(
                name=param_name,
                type=param_val['type'],
                documentation=param_val['documentation'],
            )
            for param_name, param_val in params.items()
        ]

    def _get_metadata_property(self, name):
        try:
            return self.metadata[name]
        except KeyError:
            raise UndefinedModelAttributeError(
                f'"{name}" not defined in the metadata of the model: {self}'
            )

    # Signature version is one of the rare properties
    # that can be modified so a CachedProperty is not used here.

    @property
    def signature_version(self):
        if self._signature_version is NOT_SET:
            signature_version = self.metadata.get('signatureVersion')
            self._signature_version = signature_version
        return self._signature_version

    @signature_version.setter
    def signature_version(self, value):
        self._signature_version = value

    def __repr__(self):
        return f'{self.__class__.__name__}({self.service_name})'


class OperationModel:
    def __init__(self, operation_model, service_model, name=None):
        """

        :type operation_model: dict
        :param operation_model: The operation model.  This comes from the
            service model, and is the value associated with the operation
            name in the service model (i.e ``model['operations'][op_name]``).

        :type service_model: botocore.model.ServiceModel
        :param service_model: The service model associated with the operation.

        :type name: string
        :param name: The operation name.  This is the operation name exposed to
            the users of this model.  This can potentially be different from
            the "wire_name", which is the operation name that *must* by
            provided over the wire.  For example, given::

               "CreateCloudFrontOriginAccessIdentity":{
                 "name":"CreateCloudFrontOriginAccessIdentity2014_11_06",
                  ...
              }

           The ``name`` would be ``CreateCloudFrontOriginAccessIdentity``,
           but the ``self.wire_name`` would be
           ``CreateCloudFrontOriginAccessIdentity2014_11_06``, which is the
           value we must send in the corresponding HTTP request.

        """
        self._operation_model = operation_model
        self._service_model = service_model
        self._api_name = name
        # Clients can access '.name' to get the operation name
        # and '.metadata' to get the top level metdata of the service.
        self._wire_name = operation_model.get('name')
        self.metadata = service_model.metadata
        self.http = operation_model.get('http', {})

    @CachedProperty
    def name(self):
        if self._api_name is not None:
            return self._api_name
        else:
            return self.wire_name

    @property
    def wire_name(self):
        """The wire name of the operation.

        In many situations this is the same value as the
        ``name``, value, but in some services, the operation name
        exposed to the user is different from the operation name
        we send across the wire (e.g cloudfront).

        Any serialization code should use ``wire_name``.

        """
        return self._operation_model.get('name')

    @property
    def service_model(self):
        return self._service_model

    @CachedProperty
    def documentation(self):
        return self._operation_model.get('documentation', '')

    @CachedProperty
    def deprecated(self):
        return self._operation_model.get('deprecated', False)

    @CachedProperty
    def endpoint_discovery(self):
        # Explicit None default. An empty dictionary for this trait means it is
        # enabled but not required to be used.
        return self._operation_model.get('endpointdiscovery', None)

    @CachedProperty
    def is_endpoint_discovery_operation(self):
        return self._operation_model.get('endpointoperation', False)

    @CachedProperty
    def input_shape(self):
        if 'input' not in self._operation_model:
            # Some operations do not accept any input and do not define an
            # input shape.
            return None
        return self._service_model.resolve_shape_ref(
            self._operation_model['input']
        )

    @CachedProperty
    def output_shape(self):
        if 'output' not in self._operation_model:
            # Some operations do not define an output shape,
            # in which case we return None to indicate the
            # operation has no expected output.
            return None
        return self._service_model.resolve_shape_ref(
            self._operation_model['output']
        )

    @CachedProperty
    def idempotent_members(self):
        input_shape = self.input_shape
        if not input_shape:
            return []

        return [
            name
            for (name, shape) in input_shape.members.items()
            if 'idempotencyToken' in shape.metadata
            and shape.metadata['idempotencyToken']
        ]

    @CachedProperty
    def static_context_parameters(self):
        params = self._operation_model.get('staticContextParams', {})
        return [
            StaticContextParameter(name=name, value=props.get('value'))
            for name, props in params.items()
        ]

    @CachedProperty
    def context_parameters(self):
        if not self.input_shape:
            return []

        return [
            ContextParameter(
                name=shape.metadata['contextParam']['name'],
                member_name=name,
            )
            for name, shape in self.input_shape.members.items()
            if 'contextParam' in shape.metadata
            and 'name' in shape.metadata['contextParam']
        ]

    @CachedProperty
    def request_compression(self):
        return self._operation_model.get('requestcompression')

    @CachedProperty
    def auth_type(self):
        return self._operation_model.get('authtype')

    @CachedProperty
    def error_shapes(self):
        shapes = self._operation_model.get("errors", [])
        return list(self._service_model.resolve_shape_ref(s) for s in shapes)

    @CachedProperty
    def endpoint(self):
        return self._operation_model.get('endpoint')

    @CachedProperty
    def http_checksum_required(self):
        return self._operation_model.get('httpChecksumRequired', False)

    @CachedProperty
    def http_checksum(self):
        return self._operation_model.get('httpChecksum', {})

    @CachedProperty
    def has_event_stream_input(self):
        return self.get_event_stream_input() is not None

    @CachedProperty
    def has_event_stream_output(self):
        return self.get_event_stream_output() is not None

    def get_event_stream_input(self):
        return self._get_event_stream(self.input_shape)

    def get_event_stream_output(self):
        return self._get_event_stream(self.output_shape)

    def _get_event_stream(self, shape):
        """Returns the event stream member's shape if any or None otherwise."""
        if shape is None:
            return None
        event_name = shape.event_stream_name
        if event_name:
            return shape.members[event_name]
        return None

    @CachedProperty
    def has_streaming_input(self):
        return self.get_streaming_input() is not None

    @CachedProperty
    def has_streaming_output(self):
        return self.get_streaming_output() is not None

    def get_streaming_input(self):
        return self._get_streaming_body(self.input_shape)

    def get_streaming_output(self):
        return self._get_streaming_body(self.output_shape)

    def _get_streaming_body(self, shape):
        """Returns the streaming member's shape if any; or None otherwise."""
        if shape is None:
            return None
        payload = shape.serialization.get('payload')
        if payload is not None:
            payload_shape = shape.members[payload]
            if payload_shape.type_name == 'blob':
                return payload_shape
        return None

    def __repr__(self):
        return f'{self.__class__.__name__}(name={self.name})'


class ShapeResolver:
    """Resolves shape references."""

    # Any type not in this mapping will default to the Shape class.
    SHAPE_CLASSES = {
        'structure': StructureShape,
        'list': ListShape,
        'map': MapShape,
        'string': StringShape,
    }

    def __init__(self, shape_map):
        self._shape_map = shape_map
        self._shape_cache = {}

    def get_shape_by_name(self, shape_name, member_traits=None):
        try:
            shape_model = self._shape_map[shape_name]
        except KeyError:
            raise NoShapeFoundError(shape_name)
        try:
            shape_cls = self.SHAPE_CLASSES.get(shape_model['type'], Shape)
        except KeyError:
            raise InvalidShapeError(
                f"Shape is missing required key 'type': {shape_model}"
            )
        if member_traits:
            shape_model = shape_model.copy()
            shape_model.update(member_traits)
        result = shape_cls(shape_name, shape_model, self)
        return result

    def resolve_shape_ref(self, shape_ref):
        # A shape_ref is a dict that has a 'shape' key that
        # refers to a shape name as well as any additional
        # member traits that are then merged over the shape
        # definition.  For example:
        # {"shape": "StringType", "locationName": "Foobar"}
        if len(shape_ref) == 1 and 'shape' in shape_ref:
            # It's just a shape ref with no member traits, we can avoid
            # a .copy().  This is the common case so it's specifically
            # called out here.
            return self.get_shape_by_name(shape_ref['shape'])
        else:
            member_traits = shape_ref.copy()
            try:
                shape_name = member_traits.pop('shape')
            except KeyError:
                raise InvalidShapeReferenceError(
                    f"Invalid model, missing shape reference: {shape_ref}"
                )
            return self.get_shape_by_name(shape_name, member_traits)


class UnresolvableShapeMap:
    """A ShapeResolver that will throw ValueErrors when shapes are resolved."""

    def get_shape_by_name(self, shape_name, member_traits=None):
        raise ValueError(
            f"Attempted to lookup shape '{shape_name}', but no shape map was provided."
        )

    def resolve_shape_ref(self, shape_ref):
        raise ValueError(
            f"Attempted to resolve shape '{shape_ref}', but no shape "
            f"map was provided."
        )


class DenormalizedStructureBuilder:
    """Build a StructureShape from a denormalized model.

    This is a convenience builder class that makes it easy to construct
    ``StructureShape``s based on a denormalized model.

    It will handle the details of creating unique shape names and creating
    the appropriate shape map needed by the ``StructureShape`` class.

    Example usage::

        builder = DenormalizedStructureBuilder()
        shape = builder.with_members({
            'A': {
                'type': 'structure',
                'members': {
                    'B': {
                        'type': 'structure',
                        'members': {
                            'C': {
                                'type': 'string',
                            }
                        }
                    }
                }
            }
        }).build_model()
        # ``shape`` is now an instance of botocore.model.StructureShape

    :type dict_type: class
    :param dict_type: The dictionary type to use, allowing you to opt-in
                      to using OrderedDict or another dict type. This can
                      be particularly useful for testing when order
                      matters, such as for documentation.

    """

    SCALAR_TYPES = (
        'string',
        'integer',
        'boolean',
        'blob',
        'float',
        'timestamp',
        'long',
        'double',
        'char',
    )

    def __init__(self, name=None):
        self.members = OrderedDict()
        self._name_generator = ShapeNameGenerator()
        if name is None:
            self.name = self._name_generator.new_shape_name('structure')

    def with_members(self, members):
        """

        :type members: dict
        :param members: The denormalized members.

        :return: self

        """
        self._members = members
        return self

    def build_model(self):
        """Build the model based on the provided members.

        :rtype: botocore.model.StructureShape
        :return: The built StructureShape object.

        """
        shapes = OrderedDict()
        denormalized = {
            'type': 'structure',
            'members': self._members,
        }
        self._build_model(denormalized, shapes, self.name)
        resolver = ShapeResolver(shape_map=shapes)
        return StructureShape(
            shape_name=self.name,
            shape_model=shapes[self.name],
            shape_resolver=resolver,
        )

    def _build_model(self, model, shapes, shape_name):
        if model['type'] == 'structure':
            shapes[shape_name] = self._build_structure(model, shapes)
        elif model['type'] == 'list':
            shapes[shape_name] = self._build_list(model, shapes)
        elif model['type'] == 'map':
            shapes[shape_name] = self._build_map(model, shapes)
        elif model['type'] in self.SCALAR_TYPES:
            shapes[shape_name] = self._build_scalar(model)
        else:
            raise InvalidShapeError(f"Unknown shape type: {model['type']}")

    def _build_structure(self, model, shapes):
        members = OrderedDict()
        shape = self._build_initial_shape(model)
        shape['members'] = members

        for name, member_model in model.get('members', OrderedDict()).items():
            member_shape_name = self._get_shape_name(member_model)
            members[name] = {'shape': member_shape_name}
            self._build_model(member_model, shapes, member_shape_name)
        return shape

    def _build_list(self, model, shapes):
        member_shape_name = self._get_shape_name(model)
        shape = self._build_initial_shape(model)
        shape['member'] = {'shape': member_shape_name}
        self._build_model(model['member'], shapes, member_shape_name)
        return shape

    def _build_map(self, model, shapes):
        key_shape_name = self._get_shape_name(model['key'])
        value_shape_name = self._get_shape_name(model['value'])
        shape = self._build_initial_shape(model)
        shape['key'] = {'shape': key_shape_name}
        shape['value'] = {'shape': value_shape_name}
        self._build_model(model['key'], shapes, key_shape_name)
        self._build_model(model['value'], shapes, value_shape_name)
        return shape

    def _build_initial_shape(self, model):
        shape = {
            'type': model['type'],
        }
        if 'documentation' in model:
            shape['documentation'] = model['documentation']
        for attr in Shape.METADATA_ATTRS:
            if attr in model:
                shape[attr] = model[attr]
        return shape

    def _build_scalar(self, model):
        return self._build_initial_shape(model)

    def _get_shape_name(self, model):
        if 'shape_name' in model:
            return model['shape_name']
        else:
            return self._name_generator.new_shape_name(model['type'])


class ShapeNameGenerator:
    """Generate unique shape names for a type.

    This class can be used in conjunction with the DenormalizedStructureBuilder
    to generate unique shape names for a given type.

    """

    def __init__(self):
        self._name_cache = defaultdict(int)

    def new_shape_name(self, type_name):
        """Generate a unique shape name.

        This method will guarantee a unique shape name each time it is
        called with the same type.

        ::

            >>> s = ShapeNameGenerator()
            >>> s.new_shape_name('structure')
            'StructureType1'
            >>> s.new_shape_name('structure')
            'StructureType2'
            >>> s.new_shape_name('list')
            'ListType1'
            >>> s.new_shape_name('list')
            'ListType2'


        :type type_name: string
        :param type_name: The type name (structure, list, map, string, etc.)

        :rtype: string
        :return: A unique shape name for the given type

        """
        self._name_cache[type_name] += 1
        current_index = self._name_cache[type_name]
        return f'{type_name.capitalize()}Type{current_index}'
¿Qué es la limpieza dental de perros? - Clínica veterinaria


Es la eliminación del sarro y la placa adherida a la superficie de los dientes mediante un equipo de ultrasonidos que garantiza la integridad de las piezas dentales a la vez que elimina en profundidad cualquier resto de suciedad.

A continuación se procede al pulido de los dientes mediante una fresa especial que elimina la placa bacteriana y devuelve a los dientes el aspecto sano que deben tener.

Una vez terminado todo el proceso, se mantiene al perro en observación hasta que se despierta de la anestesia, bajo la atenta supervisión de un veterinario.

¿Cada cuánto tiempo tengo que hacerle una limpieza dental a mi perro?

A partir de cierta edad, los perros pueden necesitar una limpieza dental anual o bianual. Depende de cada caso. En líneas generales, puede decirse que los perros de razas pequeñas suelen acumular más sarro y suelen necesitar una atención mayor en cuanto a higiene dental.


Riesgos de una mala higiene


Los riesgos más evidentes de una mala higiene dental en los perros son los siguientes:

  • Cuando la acumulación de sarro no se trata, se puede producir una inflamación y retracción de las encías que puede descalzar el diente y provocar caídas.
  • Mal aliento (halitosis).
  • Sarro perros
  • Puede ir a más
  • Las bacterias de la placa pueden trasladarse a través del torrente circulatorio a órganos vitales como el corazón ocasionando problemas de endocarditis en las válvulas. Las bacterias pueden incluso acantonarse en huesos (La osteomielitis es la infección ósea, tanto cortical como medular) provocando mucho dolor y una artritis séptica).

¿Cómo se forma el sarro?

El sarro es la calcificación de la placa dental. Los restos de alimentos, junto con las bacterias presentes en la boca, van a formar la placa bacteriana o placa dental. Si la placa no se retira, al mezclarse con la saliva y los minerales presentes en ella, reaccionará formando una costra. La placa se calcifica y se forma el sarro.

El sarro, cuando se forma, es de color blanquecino pero a medida que pasa el tiempo se va poniendo amarillo y luego marrón.

Síntomas de una pobre higiene dental
La señal más obvia de una mala salud dental canina es el mal aliento.

Sin embargo, a veces no es tan fácil de detectar
Y hay perros que no se dejan abrir la boca por su dueño. Por ejemplo…

Recientemente nos trajeron a la clínica a un perro que parpadeaba de un ojo y decía su dueño que le picaba un lado de la cara. Tenía molestias y dificultad para comer, lo que había llevado a sus dueños a comprarle comida blanda (que suele ser un poco más cara y llevar más contenido en grasa) durante medio año. Después de una exploración oftalmológica, nos dimos cuenta de que el ojo tenía una úlcera en la córnea probablemente de rascarse . Además, el canto lateral del ojo estaba inflamado. Tenía lo que en humanos llamamos flemón pero como era un perro de pelo largo, no se le notaba a simple vista. Al abrirle la boca nos llamó la atención el ver una muela llena de sarro. Le realizamos una radiografía y encontramos una fístula que llegaba hasta la parte inferior del ojo.

Le tuvimos que extraer la muela. Tras esto, el ojo se curó completamente con unos colirios y una lentilla protectora de úlcera. Afortunadamente, la úlcera no profundizó y no perforó el ojo. Ahora el perro come perfectamente a pesar de haber perdido una muela.

¿Cómo mantener la higiene dental de tu perro?
Hay varias maneras de prevenir problemas derivados de la salud dental de tu perro.

Limpiezas de dientes en casa
Es recomendable limpiar los dientes de tu perro semanal o diariamente si se puede. Existe una gran variedad de productos que se pueden utilizar:

Pastas de dientes.
Cepillos de dientes o dedales para el dedo índice, que hacen más fácil la limpieza.
Colutorios para echar en agua de bebida o directamente sobre el diente en líquido o en spray.

En la Clínica Tus Veterinarios enseñamos a nuestros clientes a tomar el hábito de limpiar los dientes de sus perros desde que son cachorros. Esto responde a nuestro compromiso con la prevención de enfermedades caninas.

Hoy en día tenemos muchos clientes que limpian los dientes todos los días a su mascota, y como resultado, se ahorran el dinero de hacer limpiezas dentales profesionales y consiguen una mejor salud de su perro.


Limpiezas dentales profesionales de perros y gatos

Recomendamos hacer una limpieza dental especializada anualmente. La realizamos con un aparato de ultrasonidos que utiliza agua para quitar el sarro. Después, procedemos a pulir los dientes con un cepillo de alta velocidad y una pasta especial. Hacemos esto para proteger el esmalte.

La frecuencia de limpiezas dentales necesaria varía mucho entre razas. En general, las razas grandes tienen buena calidad de esmalte, por lo que no necesitan hacerlo tan a menudo e incluso pueden pasarse la vida sin requerir una limpieza. Sin embargo, razas pequeñas como el Yorkshire o el Maltés, deben hacérselas todos los años desde cachorros si se quiere conservar sus piezas dentales.

Otro factor fundamental es la calidad del pienso. Algunas marcas han diseñado croquetas que limpian la superficie del diente y de la muela al masticarse.

Ultrasonido para perros

¿Se necesita anestesia para las limpiezas dentales de perros y gatos?

La limpieza dental en perros no es una técnica que pueda practicarse sin anestesia general , aunque hay veces que los propietarios no quieren anestesiar y si tiene poco sarro y el perro es muy bueno se puede intentar…… , pero no se va a poder pulir ni acceder a todas la zona de la boca …. Además los limpiadores dentales van a irrigar agua y hay riesgo de aspiración a vías respiratorias si no se realiza una anestesia correcta con intubación traqueal . En resumen , sin anestesia no se va hacer una correcta limpieza dental.

Tampoco sirve la sedación ya que necesitamos que el animal esté totalmente quieto, y el veterinario tenga un acceso completo a todas sus piezas dentales y encías.

Alimentos para la limpieza dental

Hay que tener cierto cuidado a la hora de comprar determinados alimentos porque no todos son saludables. Algunos tienen demasiado contenido graso, que en exceso puede causar problemas cardiovasculares y obesidad.

Los mejores alimentos para los dientes son aquellos que están elaborados por empresas farmacéuticas y llevan componentes químicos con tratamientos específicos para el diente del perro. Esto implica no solo limpieza a través de la acción mecánica de morder sino también un tratamiento antibacteriano para prevenir el sarro.

Conclusión

Si eres como la mayoría de dueños, por falta de tiempo , es probable que no estés prestando la suficiente atención a la limpieza dental de tu perro. Por eso te animamos a que comiences a limpiar los dientes de tu perro y consideres atender a su higiene bucal con frecuencia.

Estas simples medidas pueden conllevar a que tu perro tenga una vida más larga y mucho más saludable.

Si te resulta imposible introducir un cepillo de dientes a tu perro en la boca, pásate con él por clínica Tus Veterinarios y te explicamos cómo hacerlo.

Necesitas hacer una limpieza dental profesional a tu mascota?
Llámanos al 622575274 o contacta con nosotros

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

¡Hola!