Current File : //usr/share/perl5/Dpkg/Shlibs/Objdump.pm |
# Copyright © 2007-2010 Raphaël Hertzog <hertzog@debian.org>
# Copyright © 2007-2009,2012-2015,2017-2018 Guillem Jover <guillem@debian.org>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
=encoding utf8
=head1 NAME
Dpkg::Shlibs::Objdump - symbol support via objdump
=head1 DESCRIPTION
This module provides a class that wraps objdump to handle symbols and
their attributes from a shared object.
B<Note>: This is a private module, its API can change at any time.
=cut
package Dpkg::Shlibs::Objdump 0.01;
use strict;
use warnings;
use feature qw(state);
use Dpkg::Gettext;
use Dpkg::ErrorHandling;
use Dpkg::Shlibs::Objdump::Object;
sub new {
my $this = shift;
my $class = ref($this) || $this;
my $self = { objects => {} };
bless $self, $class;
return $self;
}
sub add_object {
my ($self, $obj) = @_;
my $id = $obj->get_id;
if ($id) {
$self->{objects}{$id} = $obj;
}
return $id;
}
sub analyze {
my ($self, $file) = @_;
my $obj = Dpkg::Shlibs::Objdump::Object->new($file);
return $self->add_object($obj);
}
sub locate_symbol {
my ($self, $name) = @_;
foreach my $obj (values %{$self->{objects}}) {
my $sym = $obj->get_symbol($name);
if (defined($sym) && $sym->{defined}) {
return $sym;
}
}
return;
}
sub get_object {
my ($self, $objid) = @_;
if ($self->has_object($objid)) {
return $self->{objects}{$objid};
}
return;
}
sub has_object {
my ($self, $objid) = @_;
return exists $self->{objects}{$objid};
}
use constant {
# ELF Class.
ELF_BITS_NONE => 0,
ELF_BITS_32 => 1,
ELF_BITS_64 => 2,
# ELF Data encoding.
ELF_ORDER_NONE => 0,
ELF_ORDER_2LSB => 1,
ELF_ORDER_2MSB => 2,
# ELF Machine.
EM_NONE => 0,
EM_SPARC => 2,
EM_386 => 3,
EM_68K => 4,
EM_MIPS => 8,
EM_SPARC64_OLD => 11,
EM_PARISC => 15,
EM_SPARC32PLUS => 18,
EM_PPC => 20,
EM_PPC64 => 21,
EM_S390 => 22,
EM_ARM => 40,
EM_ALPHA_OLD => 41,
EM_SH => 42,
EM_SPARC64 => 43,
EM_IA64 => 50,
EM_X86_64 => 62,
EM_OR1K => 92,
EM_AARCH64 => 183,
EM_ARCV2 => 195,
EM_RISCV => 243,
EM_LOONGARCH => 258,
EM_OR1K_OLD => 0x8472,
EM_ALPHA => 0x9026,
EM_S390_OLD => 0xa390,
EM_NIOS32 => 0xfebb,
# ELF Version.
EV_NONE => 0,
EV_CURRENT => 1,
# ELF Flags (might influence the ABI).
EF_ARM_ALIGN8 => 0x00000040,
EF_ARM_NEW_ABI => 0x00000080,
EF_ARM_OLD_ABI => 0x00000100,
EF_ARM_SOFT_FLOAT => 0x00000200,
EF_ARM_HARD_FLOAT => 0x00000400,
EF_ARM_EABI_MASK => 0xff000000,
EF_IA64_ABI64 => 0x00000010,
EF_LOONGARCH_SOFT_FLOAT => 0x00000001,
EF_LOONGARCH_SINGLE_FLOAT => 0x00000002,
EF_LOONGARCH_DOUBLE_FLOAT => 0x00000003,
EF_LOONGARCH_ABI_MASK => 0x00000007,
EF_MIPS_ABI2 => 0x00000020,
EF_MIPS_32BIT => 0x00000100,
EF_MIPS_FP64 => 0x00000200,
EF_MIPS_NAN2008 => 0x00000400,
EF_MIPS_ABI_MASK => 0x0000f000,
EF_MIPS_ARCH_MASK => 0xf0000000,
EF_OR1K_NODELAY => 0x00000001,
EF_PPC64_ABI64 => 0x00000003,
EF_RISCV_FLOAT_ABI_SOFT => 0x0000,
EF_RISCV_FLOAT_ABI_SINGLE => 0x0002,
EF_RISCV_FLOAT_ABI_DOUBLE => 0x0004,
EF_RISCV_FLOAT_ABI_QUAD => 0x0006,
EF_RISCV_FLOAT_ABI_MASK => 0x0006,
EF_RISCV_RVE => 0x0008,
EF_SH_MACH_MASK => 0x0000001f,
};
# These map machine IDs to their name.
my %elf_mach_name = (
EM_NONE() => 'none',
EM_386() => 'i386',
EM_68K() => 'm68k',
EM_AARCH64() => 'arm64',
EM_ALPHA() => 'alpha',
EM_ARCV2() => 'arcv2',
EM_ARM() => 'arm',
EM_IA64() => 'ia64',
EM_LOONGARCH() => 'loong',
EM_MIPS() => 'mips',
EM_NIOS32() => 'nios2',
EM_OR1K() => 'or1k',
EM_PARISC() => 'hppa',
EM_PPC() => 'ppc',
EM_PPC64() => 'ppc64',
EM_RISCV() => 'riscv',
EM_S390() => 's390',
EM_SH() => 'sh',
EM_SPARC() => 'sparc',
EM_SPARC64() => 'sparc64',
EM_X86_64() => 'amd64',
);
# These map alternative or old machine IDs to their canonical form.
my %elf_mach_map = (
EM_ALPHA_OLD() => EM_ALPHA,
EM_OR1K_OLD() => EM_OR1K,
EM_S390_OLD() => EM_S390,
EM_SPARC32PLUS() => EM_SPARC,
EM_SPARC64_OLD() => EM_SPARC64,
);
# These masks will try to expose processor flags that are ABI incompatible,
# and as such are part of defining the architecture ABI. If uncertain it is
# always better to not mask a flag, because that preserves the historical
# behavior, and we do not drop dependencies.
my %elf_flags_mask = (
# XXX: The mask for ARM had to be disabled due to objects in the wild
# with EABIv4, while EABIv5 is the current one, and the soft and hard
# flags not always being set on armel and armhf respectively, although
# the Tag_ABI_VFP_args in the ARM attribute section should always be
# present on armhf, and there are even cases where both soft and hard
# float flags are set at the same time(!). Once these are confirmed to
# be fixed, we could reconsider enabling the below for a more strict
# ABI mismatch check. See #853793.
# EM_ARM() => EF_ARM_EABI_MASK |
# EF_ARM_NEW_ABI | EF_ARM_OLD_ABI |
# EF_ARM_SOFT_FLOAT | EF_ARM_HARD_FLOAT,
EM_IA64() => EF_IA64_ABI64,
EM_LOONGARCH() => EF_LOONGARCH_ABI_MASK,
EM_MIPS() => EF_MIPS_ABI_MASK | EF_MIPS_ABI2,
EM_OR1K() => EF_OR1K_NODELAY,
EM_PPC64() => EF_PPC64_ABI64,
EM_RISCV() => EF_RISCV_FLOAT_ABI_MASK | EF_RISCV_RVE,
);
sub get_format {
my ($file) = @_;
state %format;
return $format{$file} if exists $format{$file};
my $header;
open my $fh, '<', $file or syserr(g_('cannot read %s'), $file);
my $rc = read $fh, $header, 64;
if (not defined $rc) {
syserr(g_('cannot read %s'), $file);
} elsif ($rc != 64) {
return;
}
close $fh;
my %elf;
# Unpack the identifier field.
@elf{qw(magic bits endian vertype osabi verabi)} = unpack 'a4C5', $header;
return unless $elf{magic} eq "\x7fELF";
return unless $elf{vertype} == EV_CURRENT;
my %abi;
my ($elf_word, $elf_endian);
if ($elf{bits} == ELF_BITS_32) {
$abi{bits} = 32;
$elf_word = 'L';
} elsif ($elf{bits} == ELF_BITS_64) {
$abi{bits} = 64;
$elf_word = 'Q';
} else {
return;
}
if ($elf{endian} == ELF_ORDER_2LSB) {
$abi{endian} = 'l';
$elf_endian = '<';
} elsif ($elf{endian} == ELF_ORDER_2MSB) {
$abi{endian} = 'b';
$elf_endian = '>';
} else {
return;
}
# Unpack the endianness and size dependent fields.
my $tmpl = "x16(S2Lx[${elf_word}3]L)${elf_endian}";
@elf{qw(type mach version flags)} = unpack $tmpl, $header;
# Canonicalize the machine ID.
$elf{mach} = $elf_mach_map{$elf{mach}} // $elf{mach};
$abi{mach} = $elf_mach_name{$elf{mach}} // $elf{mach};
# Mask any processor flags that might not change the architecture ABI.
$abi{flags} = $elf{flags} & ($elf_flags_mask{$elf{mach}} // 0);
# Normalize into a colon-separated string for easy comparison, and easy
# debugging aid.
$format{$file} = join ':', 'ELF', @abi{qw(bits endian mach flags)};
return $format{$file};
}
sub is_elf {
my $file = shift;
open(my $file_fh, '<', $file) or syserr(g_('cannot read %s'), $file);
my ($header, $result) = ('', 0);
if (read($file_fh, $header, 4) == 4) {
$result = 1 if ($header =~ /^\177ELF$/);
}
close($file_fh);
return $result;
}
=head1 CHANGES
=head2 Version 0.xx
This is a private module.
=cut
1;